모두의 코드
CVTPD2DQ (Intel x86/64 assembly instruction)
CVTPD2DQ
Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
F2 0F E6 /rCVTPD2DQ xmm1, xmm2/m128 | RM | V/V | SSE2 | Convert two packed double-precision floating-point values in xmm2/mem to two signed doubleword integers in xmm1. |
VEX.128.F2.0F.WIG E6 /rVCVTPD2DQ xmm1, xmm2/m128 | RM | V/V | AVX | Convert two packed double-precision floating-point values in xmm2/mem to two signed doubleword integers in xmm1. |
VEX.256.F2.0F.WIG E6 /rVCVTPD2DQ xmm1, ymm2/m256 | RM | V/V | AVX | Convert four packed double-precision floating-point values in ymm2/mem to four signed doubleword integers in xmm1. |
EVEX.128.F2.0F.W1 E6 /rVCVTPD2DQ xmm1 {k1}{z}, xmm2/m128/m64bcst | FV | V/V | AVX512VL | Convert two packed double-precision floating-point values in xmm2/m128/m64bcst to two signed doubleword integers in xmm1 subject to writemask k1. |
EVEX.256.F2.0F.W1 E6 /rVCVTPD2DQ xmm1 {k1}{z}, ymm2/m256/m64bcst | FV | V/V | AVX512VL | Convert four packed double-precision floating-point values in ymm2/m256/m64bcst to four signed doubleword integers in xmm1 subject to writemask k1. |
EVEX.512.F2.0F.W1 E6 /rVCVTPD2DQ ymm1 {k1}{z}, zmm2/m512/m64bcst{er} | FV | V/V | AVX512F | Convert eight packed double-precision floating-point values in zmm2/m512/m64bcst to eight signed doubleword integers in ymm1 subject to writemask k1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RM | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
FV | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
Description
Converts packed double-precision floating-point values in the source operand (second operand) to packed signed doubleword integers in the destination operand (first operand).
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register or the embedded rounding control bits. If a converted result cannot be represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (2w-1 , where w represents the number of bits in the destination format) is returned.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register condi-tionally updated with writemask k1. The upper bits (MAXVL-1:256/128/64) of the corresponding destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:64) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTPD2DQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_RM(EVEX.RC); ELSE SET_RM(MXCSR.RM); FI; FOR j <- 0 TO KL-1 i <- j * 32 k <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[k+63:k]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL/2] <- 0
VCVTPD2DQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 32 k <- j * 64 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]) ELSE DEST[i+31:i] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[k+63:k]) FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL/2] <- 0
VCVTPD2DQ (VEX.256 encoded version)
DEST[31:0] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]) DEST[63:32] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]) DEST[95:64] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[191:128]) DEST[127:96] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[255:192) DEST[MAX_VL-1:128]<- 0
VCVTPD2DQ (VEX.128 encoded version)
DEST[31:0] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]) DEST[63:32] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]) DEST[MAX_VL-1:64]<- 0
CVTPD2DQ (128-bit Legacy SSE version)
DEST[31:0] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]) DEST[63:32] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]) DEST[127:64] <- 0 DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPD2DQ __m256i _mm512_cvtpd_epi32(__m512d a); VCVTPD2DQ __m256i _mm512_mask_cvtpd_epi32(__m256i s, __mmask8 k, __m512d a); VCVTPD2DQ __m256i _mm512_maskz_cvtpd_epi32(__mmask8 k, __m512d a); VCVTPD2DQ __m256i _mm512_cvt_roundpd_epi32(__m512d a, int r); VCVTPD2DQ __m256i _mm512_mask_cvt_roundpd_epi32(__m256i s, __mmask8 k, __m512d a, int r); VCVTPD2DQ __m256i _mm512_maskz_cvt_roundpd_epi32(__mmask8 k, __m512d a, int r); VCVTPD2DQ __m128i _mm256_mask_cvtpd_epi32(__m128i s, __mmask8 k, __m256d a); VCVTPD2DQ __m128i _mm256_maskz_cvtpd_epi32(__mmask8 k, __m256d a); VCVTPD2DQ __m128i _mm_mask_cvtpd_epi32(__m128i s, __mmask8 k, __m128d a); VCVTPD2DQ __m128i _mm_maskz_cvtpd_epi32(__mmask8 k, __m128d a); VCVTPD2DQ __m128i _mm256_cvtpd_epi32(__m256d src) CVTPD2DQ __m128i _mm_cvtpd_epi32(__m128d src)
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
See Exceptions Type 2; additionally
EVEX-encoded instructions, see Exceptions Type E2.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.

댓글을 불러오는 중입니다..