모두의 코드
MOVAPS (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 3193 번 읽혔습니다.

MOVAPS

Move Aligned Packed Single-Precision Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

0F 28 /r
MOVAPS xmm1 xmm2/m128

RM

V/V

SSE

Move aligned packed single-precision floating-point values from xmm2/mem to xmm1.

0F 29 /r
MOVAPS xmm2/m128 xmm1

MR

V/V

SSE

Move aligned packed single-precision floating-point values from xmm1 to xmm2/mem.

VEX.128.0F.WIG 28 /r
VMOVAPS xmm1 xmm2/m128

RM

V/V

AVX

Move aligned packed single-precision floating-point values from xmm2/mem to xmm1.

VEX.128.0F.WIG 29 /r
VMOVAPS xmm2/m128 xmm1

MR

V/V

AVX

Move aligned packed single-precision floating-point values from xmm1 to xmm2/mem.

VEX.256.0F.WIG 28 /r
VMOVAPS ymm1 ymm2/m256

RM

V/V

AVX

Move aligned packed single-precision floating-point values from ymm2/mem to ymm1.

VEX.256.0F.WIG 29 /r
VMOVAPS ymm2/m256 ymm1

MR

V/V

AVX

Move aligned packed single-precision floating-point values from ymm1 to ymm2/mem.

EVEX.128.0F.W0 28 /r
VMOVAPS xmm1 {k1}{z} xmm2/m128

FVM-RM

V/V

AVX512VL
AVX512F

Move aligned packed single-precision floating-point values from xmm2/m128 to xmm1 using writemask k1.

EVEX.256.0F.W0 28 /r
VMOVAPS ymm1 {k1}{z} ymm2/m256

FVM-RM

V/V

AVX512VL
AVX512F

Move aligned packed single-precision floating-point values from ymm2/m256 to ymm1 using writemask k1.

EVEX.512.0F.W0 28 /r
VMOVAPS zmm1 {k1}{z} zmm2/m512

FVM-RM

V/V

AVX512F

Move aligned packed single-precision floating-point values from zmm2/m512 to zmm1 using writemask k1.

EVEX.128.0F.W0 29 /r
VMOVAPS xmm2/m128 {k1}{z} xmm1

FVM-MR

V/V

AVX512VL
AVX512F

Move aligned packed single-precision floating-point values from xmm1 to xmm2/m128 using writemask k1.

EVEX.256.0F.W0 29 /r
VMOVAPS ymm2/m256 {k1}{z} ymm1

FVM-MR

V/V

AVX512VL
AVX512F

Move aligned packed single-precision floating-point values from ymm1 to ymm2/m256 using writemask k1.

EVEX.512.0F.W0 29 /r
VMOVAPS zmm2/m512 {k1}{z} zmm1

FVM-MR

V/V

AVX512F

Move aligned packed single-precision floating-point values from zmm1 to zmm2/m512 using writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

MR

ModRM:r/m (w)

ModRM:reg (r)

NA

NA

FVM-RM

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

FVM-MR

ModRM:r/m (w)

ModRM:reg (r)

NA

NA

Description

Moves 4, 8 or 16 single-precision floating-point values from the source operand (second operand) to the destina-tion operand (first operand). This instruction can be used to load an XMM, YMM or ZMM register from an 128-bit, 256-bit or 512-bit memory location, to store the contents of an XMM, YMM or ZMM register into a 128-bit, 256-bit or 512-bit memory location, or to move data between two XMM, two YMM or two ZMM registers.

When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte (128-bit version), 32-byte (VEX.256 encoded version) or 64-byte (EVEX.512 encoded version) boundary or a general-protection exception (#GP) will be generated. For EVEX.512 encoded versions, the operand must be aligned to the size of the memory operand. To move single-precision floating-point values to and from unaligned memory loca-tions, use the VMOVUPS instruction.

Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

EVEX.512 encoded version:

Moves 512 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a ZMM register from a 512-bit float32 memory location, to store the contents of a ZMM register into a float32 memory location, or to move data between two ZMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 64-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-point values to and from unaligned memory locations, use the VMOVUPS instruction.

VEX.256 and EVEX.256 encoded version:

Moves 256 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary or a general-protection exception (#GP) will be generated.

128-bit versions:

Moves 128 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-point values to and from unaligned memory locations, use the VMOVUPS instruction.

128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding ZMM destination register remain unchanged.

(E)VEX.128 encoded version: Bits (MAX_VL-1:128) of the destination ZMM register are zeroed.

Operation

VMOVAPS (EVEX encoded versions, register-copy form)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  SRC[i+31:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  DEST[i+31:i] <-  0  ; zeroing-masking
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VMOVAPS (EVEX encoded versions, store-form)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i]<-  
                SRC[i+31:i]
          ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
    FI;
ENDFOR;

VMOVAPS (EVEX encoded versions, load-form)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  SRC[i+31:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  DEST[i+31:i] <-  0  ; zeroing-masking
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VMOVAPS (VEX.256 encoded version, load - and register copy)

DEST[255:0] <-  SRC[255:0]
DEST[MAX_VL-1:256] <-  0

VMOVAPS (VEX.256 encoded version, store-form)

DEST[255:0] <-  SRC[255:0]

VMOVAPS (VEX.128 encoded version, load - and register copy)

DEST[127:0] <-  SRC[127:0]
DEST[MAX_VL-1:128] <-  0

MOVAPS (128-bit load- and register-copy- form Legacy SSE version)

DEST[127:0] <-  SRC[127:0]
DEST[MAX_VL-1:128] (Unmodified)

(V)MOVAPS (128-bit store-form version)

DEST[127:0] <-  SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVAPS __m512 _mm512_load_ps(void* m);
VMOVAPS __m512 _mm512_mask_load_ps(__m512 s, __mmask16 k, void* m);
VMOVAPS __m512 _mm512_maskz_load_ps(__mmask16 k, void* m);
VMOVAPS void _mm512_store_ps(void* d, __m512 a);
VMOVAPS void _mm512_mask_store_ps(void* d, __mmask16 k, __m512 a);
VMOVAPS __m256 _mm256_mask_load_ps(__m256 a, __mmask8 k, void* s);
VMOVAPS __m256 _mm256_maskz_load_ps(__mmask8 k, void* s);
VMOVAPS void _mm256_mask_store_ps(void* d, __mmask8 k, __m256 a);
VMOVAPS __m128 _mm_mask_load_ps(__m128 a, __mmask8 k, void* s);
VMOVAPS __m128 _mm_maskz_load_ps(__mmask8 k, void* s);
VMOVAPS void _mm_mask_store_ps(void* d, __mmask8 k, __m128 a);
MOVAPS __m256 _mm256_load_ps(float* p);
MOVAPS void _mm256_store_ps(float* p, __m256 a);
MOVAPS __m128 _mm_load_ps(float* p);
MOVAPS void _mm_store_ps(float* p, __m128 a);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type1.SSE; additionally

#UD If VEX.vvvv != 1111B.

EVEX-encoded instruction, see Exceptions Type E1.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..