모두의 코드
PACKUSDW (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 582 번 읽혔습니다.

PACKUSDW

Pack with Unsigned Saturation

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 2B /r
PACKUSDW xmm1 xmm2/m128

RM

V/V

SSE4_1

Convert 4 packed signed doubleword integers from xmm1 and 4 packed signed doubleword integers from xmm2/m128 into 8 packed unsigned word integers in xmm1 using unsigned saturation.

VEX.NDS.128.66.0F38 2B /r
VPACKUSDW xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Convert 4 packed signed doubleword integers from xmm2 and 4 packed signed doubleword integers from xmm3/m128 into 8 packed unsigned word integers in xmm1 using unsigned saturation.

VEX.NDS.256.66.0F38 2B /r
VPACKUSDW ymm1 ymm2 ymm3/m256

RVM

V/V

AVX2

Convert 8 packed signed doubleword integers from ymm2 and 8 packed signed doubleword integers from ymm3/m256 into 16 packed unsigned word integers in ymm1 using unsigned saturation.

EVEX.NDS.128.66.0F38.W0 2B /r
VPACKUSDW xmm1{k1}{z} xmm2 xmm3/m128/m32bcst

FV

V/V

AVX512VL
AVX512BW

Convert packed signed doubleword integers from xmm2 and packed signed doubleword integers from xmm3/m128/m32bcst into packed unsigned word integers in xmm1 using unsigned saturation under writemask k1.

EVEX.NDS.256.66.0F38.W0 2B /r

FV

V/V

AVX512VL
AVX512BW

Convert packed signed doubleword integers from ymm2 and packed signed doubleword integers from ymm3/m256/m32bcst into packed unsigned word integers in ymm1 using unsigned saturation under writemask k1.

EVEX.NDS.512.66.0F38.W0 2B /r
VPACKUSDW zmm1{k1}{z} zmm2 zmm3/m512/m32bcst

FV

V/V

AVX512BW

Convert packed signed doubleword integers from zmm2 and packed signed doubleword integers from zmm3/m512/m32bcst into packed unsigned word integers in zmm1 using unsigned saturation under writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FV

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Converts packed signed doubleword integers in the first and second source operands into packed unsigned word integers using unsigned saturation to handle overflow conditions. If the signed doubleword value is beyond the range of an unsigned word (that is, greater than FFFFH or less than 0000H), the saturated unsigned word integer value of FFFFH or 0000H, respectively, is stored in the destination.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM register, updated conditionally under the writemask k1.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the corresponding ZMM register destination are zeroed.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding destination register destination are unmodified.

Operation

PACKUSDW (Legacy SSE instruction)

TMP[15:0] <-  (DEST[31:0] < 0) ? 0 : DEST[15:0];
DEST[15:0] <-  (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] <-  (DEST[63:32] < 0) ? 0 : DEST[47:32];
DEST[31:16] <-  (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] <-  (DEST[95:64] < 0) ? 0 : DEST[79:64];
DEST[47:32] <-  (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] <-  (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48] <-  (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] <-  (SRC[31:0] < 0) ? 0 : SRC[15:0];
DEST[79:64] <-  (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] <-  (SRC[63:32] < 0) ? 0 : SRC[47:32];
DEST[95:80] <-  (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] <-  (SRC[95:64] < 0) ? 0 : SRC[79:64];
DEST[111:96] <-  (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] <-  (SRC[127:96] < 0) ? 0 : SRC[111:96];
DEST[127:112] <-  (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;
DEST[MAX_VL-1:128] (Unmodified)

PACKUSDW (VEX.128 encoded version)

TMP[15:0] <-  (SRC1[31:0] < 0) ? 0 : SRC1[15:0];
DEST[15:0] <-  (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] <-  (SRC1[63:32] < 0) ? 0 : SRC1[47:32];
DEST[31:16] <-  (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] <-  (SRC1[95:64] < 0) ? 0 : SRC1[79:64];
DEST[47:32] <-  (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] <-  (SRC1[127:96] < 0) ? 0 : SRC1[111:96];
DEST[63:48] <-  (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] <-  (SRC2[31:0] < 0) ? 0 : SRC2[15:0];
DEST[79:64] <-  (SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] <-  (SRC2[63:32] < 0) ? 0 : SRC2[47:32];
DEST[95:80] <-  (SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] <-  (SRC2[95:64] < 0) ? 0 : SRC2[79:64];
DEST[111:96] <-  (SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] <-  (SRC2[127:96] < 0) ? 0 : SRC2[111:96];
DEST[127:112] <-  (SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112];
DEST[MAX_VL-1:128] <-  0;

VPACKUSDW (VEX.256 encoded version)

TMP[15:0] <-  (SRC1[31:0] < 0) ? 0 : SRC1[15:0];
DEST[15:0] <-  (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] <-  (SRC1[63:32] < 0) ? 0 : SRC1[47:32];
DEST[31:16] <-  (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] <-  (SRC1[95:64] < 0) ? 0 : SRC1[79:64];
DEST[47:32] <-  (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] <-  (SRC1[127:96] < 0) ? 0 : SRC1[111:96];
DEST[63:48] <-  (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] <-  (SRC2[31:0] < 0) ? 0 : SRC2[15:0];
DEST[79:64] <-  (SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] <-  (SRC2[63:32] < 0) ? 0 : SRC2[47:32];
DEST[95:80] <-  (SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] <-  (SRC2[95:64] < 0) ? 0 : SRC2[79:64];
DEST[111:96] <-  (SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] <-  (SRC2[127:96] < 0) ? 0 : SRC2[111:96];
DEST[127:112] <-  (SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;
TMP[143:128] <-  (SRC1[159:128] < 0) ? 0 : SRC1[143:128];
DEST[143:128] <-  (SRC1[159:128] > FFFFH) ? FFFFH : TMP[143:128] ;
TMP[159:144] <-  (SRC1[191:160] < 0) ? 0 : SRC1[175:160];
DEST[159:144] <-  (SRC1[191:160] > FFFFH) ? FFFFH : TMP[159:144] ;
TMP[175:160] <-  (SRC1[223:192] < 0) ? 0 : SRC1[207:192];
DEST[175:160] <-  (SRC1[223:192] > FFFFH) ? FFFFH : TMP[175:160] ;
TMP[191:176] <-  (SRC1[255:224] < 0) ? 0 : SRC1[239:224];
DEST[191:176] <-  (SRC1[255:224] > FFFFH) ? FFFFH : TMP[191:176] ;
TMP[207:192] <-  (SRC2[159:128] < 0) ? 0 : SRC2[143:128];
DEST[207:192] <-  (SRC2[159:128] > FFFFH) ? FFFFH : TMP[207:192] ;
TMP[223:208] <-  (SRC2[191:160] < 0) ? 0 : SRC2[175:160];
DEST[223:208] <-  (SRC2[191:160] > FFFFH) ? FFFFH : TMP[223:208] ;
TMP[239:224] <-  (SRC2[223:192] < 0) ? 0 : SRC2[207:192];
DEST[239:224] <-  (SRC2[223:192] > FFFFH) ? FFFFH : TMP[239:224] ;
TMP[255:240] <-  (SRC2[255:224] < 0) ? 0 : SRC2[239:224];
DEST[255:240] <-  (SRC2[255:224] > FFFFH) ? FFFFH : TMP[255:240] ;
DEST[MAX_VL-1:256] <-  0;

VPACKUSDW (EVEX encoded versions)

(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j <-  0 TO ((KL/2) - 1)
    i <-  j * 32
    IF (EVEX.b == 1) AND (SRC2 *is memory*)
          THEN
                TMP_SRC2[i+31:i] <-  SRC2[31:0]
          ELSE 
                TMP_SRC2[i+31:i] <-  SRC2[i+31:i]
    FI;
ENDFOR;
TMP[15:0] <-  (SRC1[31:0] < 0) ? 0 : SRC1[15:0];
DEST[15:0] <-  (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] <-  (SRC1[63:32] < 0) ? 0 : SRC1[47:32];
DEST[31:16] <-  (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] <-  (SRC1[95:64] < 0) ? 0 : SRC1[79:64];
DEST[47:32] <-  (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] <-  (SRC1[127:96] < 0) ? 0 : SRC1[111:96];
DEST[63:48] <-  (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] <-  (TMP_SRC2[31:0] < 0) ? 0 : TMP_SRC2[15:0];
DEST[79:64] <-  (TMP_SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] <-  (TMP_SRC2[63:32] < 0) ? 0 : TMP_SRC2[47:32];
DEST[95:80] <-  (TMP_SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] <-  (TMP_SRC2[95:64] < 0) ? 0 : TMP_SRC2[79:64];
DEST[111:96] <-  (TMP_SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] <-  (TMP_SRC2[127:96] < 0) ? 0 : TMP_SRC2[111:96];
DEST[127:112] <-  (TMP_SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;
IF VL >= 256
    TMP[143:128] <-  (SRC1[159:128] < 0) ? 0 : SRC1[143:128];
    DEST[143:128] <-  (SRC1[159:128] > FFFFH) ? FFFFH : TMP[143:128] ;
    TMP[159:144] <-  (SRC1[191:160] < 0) ? 0 : SRC1[175:160];
    DEST[159:144] <-  (SRC1[191:160] > FFFFH) ? FFFFH : TMP[159:144] ;
TMP[175:160] <-  (SRC1[223:192] < 0) ? 0 : SRC1[207:192];
    DEST[175:160] <-  (SRC1[223:192] > FFFFH) ? FFFFH : TMP[175:160] ;
    TMP[191:176] <-  (SRC1[255:224] < 0) ? 0 : SRC1[239:224];
    DEST[191:176] <-  (SRC1[255:224] > FFFFH) ? FFFFH : TMP[191:176] ;
    TMP[207:192] <-  (TMP_SRC2[159:128] < 0) ? 0 : TMP_SRC2[143:128];
    DEST[207:192] <-  (TMP_SRC2[159:128] > FFFFH) ? FFFFH : TMP[207:192] ;
    TMP[223:208] <-  (TMP_SRC2[191:160] < 0) ? 0 : TMP_SRC2[175:160];
    DEST[223:208] <-  (TMP_SRC2[191:160] > FFFFH) ? FFFFH : TMP[223:208] ;
    TMP[239:224] <-  (TMP_SRC2[223:192] < 0) ? 0 : TMP_SRC2[207:192];
    DEST[239:224] <-  (TMP_SRC2[223:192] > FFFFH) ? FFFFH : TMP[239:224] ;
    TMP[255:240] <-  (TMP_SRC2[255:224] < 0) ? 0 : TMP_SRC2[239:224];
    DEST[255:240] <-  (TMP_SRC2[255:224] > FFFFH) ? FFFFH : TMP[255:240] ;
FI;
IF VL >= 512
    TMP[271:256] <-  (SRC1[287:256] < 0) ? 0 : SRC1[271:256];
    DEST[271:256] <-  (SRC1[287:256] > FFFFH) ? FFFFH : TMP[271:256] ;
    TMP[287:272] <-  (SRC1[319:288] < 0) ? 0 : SRC1[303:288];
    DEST[287:272] <-  (SRC1[319:288] > FFFFH) ? FFFFH : TMP[287:272] ;
    TMP[303:288] <-  (SRC1[351:320] < 0) ? 0 : SRC1[335:320];
    DEST[303:288] <-  (SRC1[351:320] > FFFFH) ? FFFFH : TMP[303:288] ;
    TMP[319:304] <-  (SRC1[383:352] < 0) ? 0 : SRC1[367:352];
    DEST[319:304] <-  (SRC1[383:352] > FFFFH) ? FFFFH : TMP[319:304] ;
    TMP[335:320] <-  (TMP_SRC2[287:256] < 0) ? 0 : TMP_SRC2[271:256];
    DEST[335:304] <-  (TMP_SRC2[287:256] > FFFFH) ? FFFFH : TMP[79:64] ;
    TMP[351:336] <-  (TMP_SRC2[319:288] < 0) ? 0 : TMP_SRC2[303:288];
    DEST[351:336] <-  (TMP_SRC2[319:288] > FFFFH) ? FFFFH : TMP[351:336] ;
    TMP[367:352] <-  (TMP_SRC2[351:320] < 0) ? 0 : TMP_SRC2[315:320];
    DEST[367:352] <-  (TMP_SRC2[351:320] > FFFFH) ? FFFFH : TMP[367:352] ;
    TMP[383:368] <-  (TMP_SRC2[383:352] < 0) ? 0 : TMP_SRC2[367:352];
    DEST[383:368] <-  (TMP_SRC2[383:352] > FFFFH) ? FFFFH : TMP[383:368] ;
    TMP[399:384] <-  (SRC1[415:384] < 0) ? 0 : SRC1[399:384];
    DEST[399:384] <-  (SRC1[415:384] > FFFFH) ? FFFFH : TMP[399:384] ;
    TMP[415:400] <-  (SRC1[447:416] < 0) ? 0 : SRC1[431:416];
    DEST[415:400] <-  (SRC1[447:416] > FFFFH) ? FFFFH : TMP[415:400] ;
    TMP[431:416] <-  (SRC1[479:448] < 0) ? 0 : SRC1[463:448];
    DEST[431:416] <-  (SRC1[479:448] > FFFFH) ? FFFFH : TMP[431:416] ;
    TMP[447:432] <-  (SRC1[511:480] < 0) ? 0 : SRC1[495:480];
    DEST[447:432] <-  (SRC1[511:480] > FFFFH) ? FFFFH : TMP[447:432] ;
    TMP[463:448] <-  (TMP_SRC2[415:384] < 0) ? 0 : TMP_SRC2[399:384];
    DEST[463:448] <-  (TMP_SRC2[415:384] > FFFFH) ? FFFFH : TMP[463:448] ;
    TMP[475:464] <-  (TMP_SRC2[447:416] < 0) ? 0 : TMP_SRC2[431:416];
    DEST[475:464] <-  (TMP_SRC2[447:416] > FFFFH) ? FFFFH : TMP[475:464] ;
    TMP[491:476] <-  (TMP_SRC2[479:448] < 0) ? 0 : TMP_SRC2[463:448];
    DEST[491:476] <-  (TMP_SRC2[479:448] > FFFFH) ? FFFFH : TMP[491:476] ;
    TMP[511:492] <-  (TMP_SRC2[511:480] < 0) ? 0 : TMP_SRC2[495:480];
    DEST[511:492] <-  (TMP_SRC2[511:480] > FFFFH) ? FFFFH : TMP[511:492] ;
FI;
FOR j <-  0 TO KL-1
    i <-  j * 16
    IF k1[j] OR *no writemask*
          THEN 
                DEST[i+15:i] <-  TMP_DEST[i+15:i]
          ELSE 
                IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking
                            DEST[i+15:i] <-  0
                FI
    FI;
ENDFOR;
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalents

VPACKUSDW__m512i _mm512_packus_epi32(__m512i m1, __m512i m2);
VPACKUSDW__m512i _mm512_mask_packus_epi32(__m512i s, __mmask32 k, __m512i m1,
                                          __m512i m2);
VPACKUSDW__m512i _mm512_maskz_packus_epi32(__mmask32 k, __m512i m1, __m512i m2);
VPACKUSDW__m256i _mm256_mask_packus_epi32(__m256i s, __mmask16 k, __m256i m1,
                                          __m256i m2);
VPACKUSDW__m256i _mm256_maskz_packus_epi32(__mmask16 k, __m256i m1, __m256i m2);
VPACKUSDW__m128i _mm_mask_packus_epi32(__m128i s, __mmask8 k, __m128i m1,
                                       __m128i m2);
VPACKUSDW__m128i _mm_maskz_packus_epi32(__mmask8 k, __m128i m1, __m128i m2);
PACKUSDW__m128i _mm_packus_epi32(__m128i m1, __m128i m2);
VPACKUSDW__m256i _mm256_packus_epi32(__m256i m1, __m256i m2);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded instruction, see Exceptions Type E4NF.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..