모두의 코드
PALIGNR (Intel x86/64 assembly instruction)
PALIGNR
Packed Align Right
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op/ | 64/32 bit | CPUID | Description |
---|---|---|---|---|
| RMI | V/V | SSSE3 | Concatenate destination and source operands, extract byte-aligned result shifted to the right by constant value in imm8 into mm1. |
| RMI | V/V | SSSE3 | Concatenate destination and source operands, extract byte-aligned result shifted to the right by constant value in imm8 into xmm1. |
| RVMI | V/V | AVX | Concatenate xmm2 and xmm3/m128, extract byte aligned result shifted to the right by constant value in imm8 and result is stored in xmm1. |
| RVMI | V/V | AVX2 | Concatenate pairs of 16 bytes in ymm2 and ymm3/m256 into 32-byte intermediate result, extract byte-aligned, 16-byte result shifted to the right by constant values in imm8 from each intermediate result, and two 16-byte results are stored in ymm1. |
| FVM | V/V | AVX512VL | Concatenate xmm2 and xmm3/m128 into a 32-byte intermediate result, extract byte aligned result shifted to the right by constant value in imm8 and result is stored in xmm1. |
| FVM | V/V | AVX512VL | Concatenate pairs of 16 bytes in ymm2 and ymm3/m256 into 32-byte intermediate result, extract byte-aligned, 16-byte result shifted to the right by constant values in imm8 from each intermediate result, and two 16-byte results are stored in ymm1. |
| FVM | V/V | AVX512BW | Concatenate pairs of 16 bytes in zmm2 and zmm3/m512 into 32-byte intermediate result, extract byte-aligned, 16-byte result shifted to the right by constant values in imm8 from each intermediate result, and four 16-byte results are stored in zmm1. |
See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RMI | ModRM:reg (r, w) | ModRM:r/m (r) | imm8 | NA |
RVMI | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | imm8 |
FVM | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | NA |
Description
(V)PALIGNR concatenates the destination operand (the first operand) and the source operand (the second operand) into an intermediate composite, shifts the composite at byte granularity to the right by a constant imme-diate, and extracts the right-aligned result into the destination. The first and the second operands can be an MMX,
XMM or a YMM register. The immediate value is considered unsigned. Immediate shift counts larger than the 2L (i.e. 32 for 128-bit operands, or 16 for 64-bit operands) produce a zero result. Both operands can be MMX regis-ters, XMM registers or YMM registers. When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.
In 64-bit mode and not encoded by VEX/EVEX prefix, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
EVEX.512 encoded version: The first source operand is a ZMM register and contains four 16-byte blocks. The second source operand is a ZMM register or a 512-bit memory location containing four 16-byte block. The destina-tion operand is a ZMM register and contain four 16-byte results. The imm8[7:0] is the common shift count
used for each of the four successive 16-byte block sources. The low 16-byte block of the two source operands produce the low 16-byte result of the destination operand, the high 16-byte block of the two source operands produce the high 16-byte result of the destination operand and so on for the blocks in the middle.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register and contains two 16-byte blocks. The second source operand is a YMM register or a 256-bit memory location containing two 16-byte block. The destination operand is a YMM register and contain two 16-byte results. The imm8[7:0] is the common shift count used for the two lower 16-byte block sources and the two upper 16-byte block sources. The low 16-byte block of the two source operands produce the low 16-byte result of the destination operand, the high 16-byte block of the two source operands produce the high 16-byte result of the destination operand. The upper bits (MAX_VL-1:256) of the corresponding ZMM register destination are zeroed.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are zeroed.
Concatenation is done with 128-bit data in the first and second source operand for both 128-bit and 256-bit instructions. The high 128-bits of the intermediate composite 256-bit result came from the 128-bit data from the first source operand; the low 128-bits of the intermediate result came from the 128-bit data of the second source operand.
Note: VEX.L must be 0, otherwise the instruction will #UD.
Operation
PALIGNR (with 64-bit operands)
temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8) DEST[63:0] = temp1[63:0]
PALIGNR (with 128-bit operands)
temp1[255:0] <- ((DEST[127:0] << 128) OR SRC[127:0])>>(imm8*8); DEST[127:0] <- temp1[127:0] DEST[VLMAX-1:128] (Unmodified)
VPALIGNR (VEX.128 encoded version)
temp1[255:0] <- ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8*8); DEST[127:0] <- temp1[127:0] DEST[VLMAX-1:128] <- 0
VPALIGNR (VEX.256 encoded version)
temp1[255:0] <- ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8[7:0]*8); DEST[127:0] <- temp1[127:0] temp1[255:0] <- ((SRC1[255:128] << 128) OR SRC2[255:128])>>(imm8[7:0]*8); DEST[MAX_VL-1:128] <- temp1[127:0]
VPALIGNR (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512) FOR l <- 0 TO VL-1 with increments of 128 temp1[255:0] <- ((SRC1[l+127:l] << 128) OR SRC2[l+127:l])>>(imm8[7:0]*8); TMP_DEST[l+127:l] <- temp1[127:0] ENDFOR; FOR j <- 0 TO KL-1 i <- j * 8 IF k1[j] OR *no writemask* THEN DEST[i+7:i] <- TMP_DEST[i+7:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+7:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+7:i] = 0 FI FI; ENDFOR; DEST[MAX_VL-1:VL] <- 0
Intel C/C++ Compiler Intrinsic Equivalents
PALIGNR : __m64 _mm_alignr_pi8(__m64 a, __m64 b, int n)(V) PALIGNR : __m128i _mm_alignr_epi8(__m128i a, __m128i b, int n) VPALIGNR : __m256i _mm256_alignr_epi8(__m256i a, __m256i b, const int n) VPALIGNR __m512i _mm512_alignr_epi8(__m512i a, __m512i b, const int n) VPALIGNR __m512i _mm512_mask_alignr_epi8(__m512i s, __mmask64 m, __m512i a, __m512i b, const int n) VPALIGNR __m512i _mm512_maskz_alignr_epi8(__mmask64 m, __m512i a, __m512i b, const int n) VPALIGNR __m256i _mm256_mask_alignr_epi8(__m256i s, __mmask32 m, __m256i a, __m256i b, const int n) VPALIGNR __m256i _mm256_maskz_alignr_epi8(__mmask32 m, __m256i a, __m256i b, const int n) VPALIGNR __m128i _mm_mask_alignr_epi8(__m128i s, __mmask16 m, __m128i a, __m128i b, const int n) VPALIGNR __m128i _mm_maskz_alignr_epi8(__mmask16 m, __m128i a, __m128i b, const int n)
SIMD Floating-Point Exceptions
None.
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
댓글을 불러오는 중입니다..