모두의 코드
PSRAW, PSRAD, PSRAQs (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 712 번 읽혔습니다.

PSRAW, PSRAD, PSRAQ

Shift Packed Data Right Arithmetic

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E1 /r\footnote{1}
PSRAW mm mm/m64

RM

V/V

MMX

Shift words in mm right by mm/m64 while shifting in sign bits.

66 0F E1 /r
PSRAW xmm1 xmm2/m128

RM

V/V

SSE2

Shift words in xmm1 right by xmm2/m128 while shifting in sign bits.

0F 71 /4 ib\footnote{1}
PSRAW mm imm8

MI

V/V

MMX

Shift words in mm right by imm8 while shifting in sign bits

66 0F 71 /4 ib
PSRAW xmm1 imm8

MI

V/V

SSE2

Shift words in xmm1 right by imm8 while shifting in sign bits

0F E2 /r\footnote{1}
PSRAD mm mm/m64

RM

V/V

MMX

Shift doublewords in mm right by mm/m64 while shifting in sign bits.

66 0F E2 /r
PSRAD xmm1 xmm2/m128

RM

V/V

SSE2

Shift doubleword in xmm1 right by xmm2 /m128 while shifting in sign bits.

0F 72 /4 ib\footnote{1}
PSRAD mm imm8

MI

V/V

MMX

Shift doublewords in mm right by imm8 while shifting in sign bits.

66 0F 72 /4 ib
PSRAD xmm1 imm8

MI

V/V

SSE2

Shift doublewords in xmm1 right by imm8 while shifting in sign bits.

VEX.NDS.128.66.0F.WIG E1 /r
VPSRAW xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Shift words in xmm2 right by amount specified in xmm3/m128 while shifting in sign bits.

VEX.NDD.128.66.0F.WIG 71 /4 ib
VPSRAW xmm1 xmm2 imm8

VMI

V/V

AVX

Shift words in xmm2 right by imm8 while shifting in sign bits.

VEX.NDS.128.66.0F.WIG E2 /r
VPSRAD xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Shift doublewords in xmm2 right by amount specified in xmm3/m128 while shifting in sign bits.

VEX.NDD.128.66.0F.WIG 72 /4 ib
VPSRAD xmm1 xmm2 imm8

VMI

V/V

AVX

Shift doublewords in xmm2 right by imm8 while shifting in sign bits.

VEX.NDS.256.66.0F.WIG E1 /r
VPSRAW ymm1 ymm2 xmm3/m128

RVM

V/V

AVX2

Shift words in ymm2 right by amount specified in xmm3/m128 while shifting in sign bits.

VEX.NDD.256.66.0F.WIG 71 /4 ib
VPSRAW ymm1 ymm2 imm8

VMI

V/V

AVX2

Shift words in ymm2 right by imm8 while shifting in sign bits.

VEX.NDS.256.66.0F.WIG E2 /r
VPSRAD ymm1 ymm2 xmm3/m128

RVM

V/V

AVX2

Shift doublewords in ymm2 right by amount specified in xmm3/m128 while shifting in sign bits.

VEX.NDD.256.66.0F.WIG 72 /4 ib
VPSRAD ymm1 ymm2 imm8

VMI

V/V

AVX2

Shift doublewords in ymm2 right by imm8 while shifting in sign bits.

EVEX.NDS.128.66.0F.WIG E1 /r
VPSRAW xmm1 {k1}{z} xmm2 xmm3/m128

M128

V/V

AVX512VL
AVX512BW

Shift words in xmm2 right by amount specified in xmm3/m128 while shifting in sign bits using writemask k1.

EVEX.NDS.256.66.0F.WIG E1 /r
VPSRAW ymm1 {k1}{z} ymm2 xmm3/m128

M128

V/V

AVX512VL
AVX512BW

Shift words in ymm2 right by amount specified in xmm3/m128 while shifting in sign bits using writemask k1.

EVEX.NDS.512.66.0F.WIG E1 /r
VPSRAW zmm1 {k1}{z} zmm2 xmm3/m128

M128

V/V

AVX512BW

Shift words in zmm2 right by amount specified in xmm3/m128 while shifting in sign bits using writemask k1.

EVEX.NDD.128.66.0F.WIG 71 /4 ib
VPSRAW xmm1 {k1}{z}, xmm2/m128, imm8

FVMI

V/V

AVX512VL

AVX512BW

Shift words in xmm2/m128 right by imm8 while
shifting in sign bits using writemask k1.

EVEX.NDD.256.66.0F.WIG 71 /4 ibVPSRAW ymm1 {k1}{z}, ymm2/m256, imm8

FVMI

V/V

AVX512VL
AVX512BW

Shift words in ymm2/m256 right by imm8 while shifting in sign bits using writemask k1.

EVEX.NDD.512.66.0F.WIG 71 /4 ibVPSRAW zmm1 {k1}{z}, zmm2/m512, imm8

FVMI

V/V

AVX512BW

Shift words in zmm2/m512 right by imm8 while shifting in sign bits using writemask k1.

EVEX.NDS.128.66.0F.W0 E2 /rVPSRAD xmm1 {k1}{z}, xmm2, xmm3/m128

M128

V/V

AVX512VL
AVX512F

Shift doublewords in xmm2 right by amount specified in xmm3/m128 while shifting in sign bits using writemask k1.

EVEX.NDS.256.66.0F.W0 E2 /rVPSRAD ymm1 {k1}{z}, ymm2, xmm3/m128

M128

V/V

AVX512VL
AVX512F

Shift doublewords in ymm2 right by amount specified in xmm3/m128 while shifting in sign bits using writemask k1.

EVEX.NDS.512.66.0F.W0 E2 /rVPSRAD zmm1 {k1}{z}, zmm2, xmm3/m128

M128

V/V

AVX512F

Shift doublewords in zmm2 right by amount specified in xmm3/m128 while shifting in sign bits using writemask k1.

EVEX.NDD.128.66.0F.W0 72 /4 ibVPSRAD xmm1 {k1}{z}, xmm2/m128/m32bcst, imm8

FVI

V/V

AVX512VL
AVX512F

Shift doublewords in xmm2/m128/m32bcst right by imm8 while shifting in sign bits using writemask k1.

EVEX.NDD.256.66.0F.W0 72 /4 ibVPSRAD ymm1 {k1}{z}, ymm2/m256/m32bcst, imm8

FVI

V/V

AVX512VL
AVX512F

Shift doublewords in ymm2/m256/m32bcst right by imm8 while shifting in sign bits using writemask k1.

EVEX.NDD.512.66.0F.W0 72 /4 ibVPSRAD zmm1 {k1}{z}, zmm2/m512/m32bcst, imm8

FVI

V/V

AVX512F

Shift doublewords in zmm2/m512/m32bcst right by imm8 while shifting in sign bits using writemask k1.

EVEX.NDS.128.66.0F.W1 E2 /rVPSRAQ xmm1 {k1}{z}, xmm2, xmm3/m128

M128

V/V

AVX512VL
AVX512F

Shift quadwords in xmm2 right by amount specified in xmm3/m128 while shifting in sign bits using writemask k1.

EVEX.NDS.256.66.0F.W1 E2 /rVPSRAQ ymm1 {k1}{z}, ymm2, xmm3/m128

M128

V/V

AVX512VL
AVX512F

Shift quadwords in ymm2 right by amount specified in xmm3/m128 while shifting in sign bits using writemask k1.

EVEX.NDS.512.66.0F.W1 E2 /rVPSRAQ zmm1 {k1}{z}, zmm2, xmm3/m128

M128

V/V

AVX512F

Shift quadwords in zmm2 right by amount specified in xmm3/m128 while shifting in sign bits using writemask k1.

EVEX.NDD.128.66.0F.W1 72 /4 ibVPSRAQ xmm1 {k1}{z}, xmm2/m128/m64bcst, imm8

FVI

V/V

AVX512VL
AVX512F

Shift quadwords in xmm2/m128/m64bcst right by imm8 while shifting in sign bits using writemask k1.

EVEX.NDD.256.66.0F.W1 72 /4 ibVPSRAQ ymm1 {k1}{z}, ymm2/m256/m64bcst, imm8

FVI

V/V

AVX512VL
AVX512F

Shift quadwords in ymm2/m256/m64bcst right by imm8 while shifting in sign bits using writemask k1.

EVEX.NDD.512.66.0F.W1 72 /4 ibVPSRAQ zmm1 {k1}{z}, zmm2/m512/m64bcst, imm8

FVI

V/V

AVX512F

Shift quadwords in zmm2/m512/m64bcst right by imm8 while shifting in sign bits using writemask k1.

  1. See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

MI

ModRM:r/m (r, w)

imm8

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

VMI

VEX.vvvv (w)

ModRM:r/m (r)

imm8

NA

FVMI

EVEX.vvvv (w)

ModRM:r/m (R)

Imm8

NA

FVI

EVEX.vvvv (w)

ModRM:r/m (R)

Imm8

NA

M128

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Shifts the bits in the individual data elements (words, doublewords or quadwords) in the destination operand (first operand) to the right by the number of bits specified in the count operand (second operand). As the bits in the data elements are shifted right, the empty high-order bits are filled with the initial value of the sign bit of the data element. If the value specified by the count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for quadwords), each destination data element is filled with the initial value of the sign bit of the element. (Figure 4-18 gives an example of shifting words in a 64-bit operand.)

Note that only the first 64-bits of a 128-bit count operand are checked to compute the count. If the second source operand is a memory address, 128 bits are loaded.

The (V)PSRAW instruction shifts each of the words in the destination operand to the right by the number of bits specified in the count operand, and the (V)PSRAD instruction shifts each of the doublewords in the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).

Legacy SSE instructions 64-bit operand: The destination operand is an MMX technology register; the count operand can be either an MMX technology register or an 64-bit memory location.

128-bit Legacy SSE version: The destination and first source operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. The count operand can be either an XMM register or a 128-bit memory location or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are ignored.

VEX.128 encoded version: The destination and first source operands are XMM registers. Bits (VLMAX-1:128) of the destination YMM register are zeroed. The count operand can be either an XMM register or a 128-bit memory loca-tion or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are ignored.

VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a memory location. The count operand can come either from an XMM register or a memory location or an 8-bit immediate. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed.

n i s e n g i S h i w N O > > 3 N U O > T N U O C > 1 3 N O > X 0 X i R t f i h S - t s o P t 2 f h - P T S E S E D E 0 t T C T C X t U U X > T 1 > h T e h g > i x n 2 S i r X S X X D X o C t t f
Figure 4-18. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a memory location (the variable count version). For the immediate count version, the source operand (the second operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit memory location. For the variable count version, the first source operand (the second operand) is a ZMM register, the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.

Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /4, EVEX.128.66.0F 71-73 /4), VEX.vvvv/EVEX.vvvv encodes the destination register.

Operation

PSRAW (with 64-bit operand)

    IF (COUNT > 15)
          THEN COUNT <- 16;
    FI;
    DEST[15:0] <- SignExtend(DEST[15:0] >> COUNT);
    (* Repeat shift operation for 2nd and 3rd words *)
    DEST[63:48] <- SignExtend(DEST[63:48] >> COUNT);

PSRAD (with 64-bit operand)

    IF (COUNT > 31)
          THEN COUNT <- 32;
    FI;
    DEST[31:0] <- SignExtend(DEST[31:0] >> COUNT);
    DEST[63:32] <- SignExtend(DEST[63:32] >> COUNT);
ARITHMETIC_RIGHT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT <-  COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
    DEST[31:0] <-  SignBit
ELSE
    DEST[31:0] <-  SignExtend(SRC[31:0] >> COUNT);
FI;
ARITHMETIC_RIGHT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT <-  COUNT_SRC[63:0];
IF (COUNT > 63)
THEN
    DEST[63:0] <-  SignBit
ELSE
    DEST[63:0] <-  SignExtend(SRC[63:0] >> COUNT);
FI;
ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT <-  COUNT_SRC[63:0];
IF (COUNT > 15)
    THEN COUNT <-  16;
FI;
DEST[15:0] <-  SignExtend(SRC[15:0] >> COUNT);
    (* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] <-  SignExtend(SRC[255:240] >> COUNT);
ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT <-  COUNT_SRC[63:0];
IF (COUNT > 31)
    THEN COUNT <-  32;
FI;
DEST[31:0] <-  SignExtend(SRC[31:0] >> COUNT);
    (* Repeat shift operation for 2nd through 7th words *)
DEST[255:224] <-  SignExtend(SRC[255:224] >> COUNT);
ARITHMETIC_RIGHT_SHIFT_QWORDS(SRC, COUNT_SRC, VL)  ; VL: 128b, 256b or 512b
COUNT <-  COUNT_SRC[63:0];
IF (COUNT > 63)
    THEN COUNT <-  64;
FI;
DEST[63:0] <-  SignExtend(SRC[63:0] >> COUNT);
    (* Repeat shift operation for 2nd through 7th words *)
DEST[VL-1:VL-64] <-  SignExtend(SRC[VL-1:VL-64] >> COUNT);
ARITHMETIC_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT <-  COUNT_SRC[63:0];
IF (COUNT > 15)
    THEN COUNT <-  16;
FI;
DEST[15:0] <-  SignExtend(SRC[15:0] >> COUNT);
    (* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] <-  SignExtend(SRC[127:112] >> COUNT);
ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT <-  COUNT_SRC[63:0];
IF (COUNT > 31)
    THEN COUNT <-  32;
FI;
DEST[31:0] <-  SignExtend(SRC[31:0] >> COUNT);
    (* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] <-  SignExtend(SRC[127:96] >> COUNT);

VPSRAW (EVEX versions, xmm/m128)

(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
    TMP_DEST[127:0] <-  ARITHMETIC_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
    TMP_DEST[255:0] <-  ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
    TMP_DEST[255:0] <-  ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
    TMP_DEST[511:256] <-  ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j <-  0 TO KL-1
    i <-  j * 16
    IF k1[j] OR *no writemask*
          THEN DEST[i+15:i] <-  TMP_DEST[i+15:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+15:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking 
                            DEST[i+15:i] = 0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VPSRAW (EVEX versions, imm8)

(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
    TMP_DEST[127:0] <-  ARITHMETIC_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256
    TMP_DEST[255:0] <-  ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512
    TMP_DEST[255:0] <-  ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
    TMP_DEST[511:256] <-  ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], imm8)
FI;
FOR j <-  0 TO KL-1
    i <-  j * 16
    IF k1[j] OR *no writemask*
          THEN DEST[i+15:i] <-  TMP_DEST[i+15:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+15:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking 
                            DEST[i+15:i] = 0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VPSRAW (ymm, ymm, xmm/m128) - VEX

DEST[255:0] <-  ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] <-  0

VPSRAW (ymm, imm8) - VEX

DEST[255:0] <-  ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)
DEST[MAX_VL-1:256] <-  0

VPSRAW (xmm, xmm, xmm/m128) - VEX

DEST[127:0] <-  ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] <-  0

VPSRAW (xmm, imm8) - VEX

DEST[127:0] <-  ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[MAX_VL-1:128] <-  0

PSRAW (xmm, xmm, xmm/m128)

DEST[127:0] <- ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)

PSRAW (xmm, imm8)

DEST[127:0] <- ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[MAX_VL-1:128] (Unmodified)

VPSRAD (EVEX versions, imm8)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask* THEN
                IF (EVEX.b = 1) AND (SRC1 *is memory*)
                      THEN DEST[i+31:i] <-  ARITHMETIC_RIGHT_SHIFT_DWORDS1(SRC1[31:0], imm8)
                      ELSE DEST[i+31:i] <-  ARITHMETIC_RIGHT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)
                FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking 
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VPSRAD (EVEX versions, xmm/m128)

(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128
    TMP_DEST[127:0] <-  ARITHMETIC_RIGHT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
    TMP_DEST[255:0] <-  ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
    TMP_DEST[255:0] <-  ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
    TMP_DEST[511:256] <-  ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  TMP_DEST[i+31:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking 
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VPSRAD (ymm, ymm, xmm/m128) - VEX

DEST[255:0] <- ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] <-  0

VPSRAD (ymm, imm8) - VEX

DEST[255:0] <- ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAX_VL-1:256] <-  0

VPSRAD (xmm, xmm, xmm/m128) - VEX

DEST[127:0] <- ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] <- 0

VPSRAD (xmm, imm8) - VEX

DEST[127:0] <- ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAX_VL-1:128] <- 0

PSRAD (xmm, xmm, xmm/m128)

DEST[127:0] <- ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)

PSRAD (xmm, imm8)

DEST[127:0] <- ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[MAX_VL-1:128] (Unmodified)

VPSRAQ (EVEX versions, imm8)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask* THEN
                IF (EVEX.b = 1) AND (SRC1 *is memory*)
                      THEN DEST[i+63:i] <-  ARITHMETIC_RIGHT_SHIFT_QWORDS1(SRC1[63:0], imm8)
                      ELSE DEST[i+63:i] <-  ARITHMETIC_RIGHT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)
                FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking 
                            DEST[i+63:i] <-  0
FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VPSRAQ (EVEX versions, xmm/m128)

(KL, VL) = (2, 128), (4, 256), (8, 512)
TMP_DEST[VL-1:0] <-  ARITHMETIC_RIGHT_SHIFT_QWORDS(SRC1[VL-1:0], SRC2, VL)
FOR j <-  0 TO 7
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN DEST[i+63:i] <-  TMP_DEST[i+63:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking 
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalents

VPSRAD __m512i _mm512_srai_epi32(__m512i a, unsigned int imm);
VPSRAD __m512i _mm512_mask_srai_epi32(__m512i s, __mmask16 k, __m512i a,
                                      unsigned int imm);
VPSRAD __m512i _mm512_maskz_srai_epi32(__mmask16 k, __m512i a,
                                       unsigned int imm);
VPSRAD __m256i _mm256_mask_srai_epi32(__m256i s, __mmask8 k, __m256i a,
                                      unsigned int imm);
VPSRAD __m256i _mm256_maskz_srai_epi32(__mmask8 k, __m256i a, unsigned int imm);
VPSRAD __m128i _mm_mask_srai_epi32(__m128i s, __mmask8 k, __m128i a,
                                   unsigned int imm);
VPSRAD __m128i _mm_maskz_srai_epi32(__mmask8 k, __m128i a, unsigned int imm);
VPSRAD __m512i _mm512_sra_epi32(__m512i a, __m128i cnt);
VPSRAD __m512i _mm512_mask_sra_epi32(__m512i s, __mmask16 k, __m512i a,
                                     __m128i cnt);
VPSRAD __m512i _mm512_maskz_sra_epi32(__mmask16 k, __m512i a, __m128i cnt);
VPSRAD __m256i _mm256_mask_sra_epi32(__m256i s, __mmask8 k, __m256i a,
                                     __m128i cnt);
VPSRAD __m256i _mm256_maskz_sra_epi32(__mmask8 k, __m256i a, __m128i cnt);
VPSRAD __m128i _mm_mask_sra_epi32(__m128i s, __mmask8 k, __m128i a,
                                  __m128i cnt);
VPSRAD __m128i _mm_maskz_sra_epi32(__mmask8 k, __m128i a, __m128i cnt);
VPSRAQ __m512i _mm512_srai_epi64(__m512i a, unsigned int imm);
VPSRAQ __m512i _mm512_mask_srai_epi64(__m512i s, __mmask8 k, __m512i a,
                                      unsigned int imm) VPSRAQ __m512i
    _mm512_maskz_srai_epi64(__mmask8 k, __m512i a,
                            unsigned int imm) VPSRAQ __m256i
    _mm256_mask_srai_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRAQ __m256i _mm256_maskz_srai_epi64(__mmask8 k, __m256i a, unsigned int imm);
VPSRAQ __m128i _mm_mask_srai_epi64(__m128i s, __mmask8 k, __m128i a,
                                   unsigned int imm);
VPSRAQ __m128i _mm_maskz_srai_epi64(__mmask8 k, __m128i a, unsigned int imm);
VPSRAQ __m512i _mm512_sra_epi64(__m512i a, __m128i cnt);
VPSRAQ __m512i _mm512_mask_sra_epi64(__m512i s, __mmask8 k, __m512i a,
                                     __m128i cnt) VPSRAQ __m512i
    _mm512_maskz_sra_epi64(__mmask8 k, __m512i a, __m128i cnt) VPSRAQ __m256i
    _mm256_mask_sra_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRAQ __m256i _mm256_maskz_sra_epi64(__mmask8 k, __m256i a, __m128i cnt);
VPSRAQ __m128i _mm_mask_sra_epi64(__m128i s, __mmask8 k, __m128i a,
                                  __m128i cnt);
VPSRAQ __m128i _mm_maskz_sra_epi64(__mmask8 k, __m128i a, __m128i cnt);
VPSRAW __m512i _mm512_srai_epi16(__m512i a, unsigned int imm);
VPSRAW __m512i _mm512_mask_srai_epi16(__m512i s, __mmask32 k, __m512i a,
                                      unsigned int imm);
VPSRAW __m512i _mm512_maskz_srai_epi16(__mmask32 k, __m512i a,
                                       unsigned int imm);
VPSRAW __m256i _mm256_mask_srai_epi16(__m256i s, __mmask16 k, __m256i a,
                                      unsigned int imm);
VPSRAW __m256i _mm256_maskz_srai_epi16(__mmask16 k, __m256i a,
                                       unsigned int imm);
VPSRAW __m128i _mm_mask_srai_epi16(__m128i s, __mmask8 k, __m128i a,
                                   unsigned int imm);
VPSRAW __m128i _mm_maskz_srai_epi16(__mmask8 k, __m128i a, unsigned int imm);
VPSRAW __m512i _mm512_sra_epi16(__m512i a, __m128i cnt);
VPSRAW __m512i _mm512_mask_sra_epi16(__m512i s, __mmask16 k, __m512i a,
                                     __m128i cnt);
VPSRAW __m512i _mm512_maskz_sra_epi16(__mmask16 k, __m512i a, __m128i cnt);
VPSRAW __m256i _mm256_mask_sra_epi16(__m256i s, __mmask8 k, __m256i a,
                                     __m128i cnt);
VPSRAW __m256i _mm256_maskz_sra_epi16(__mmask8 k, __m256i a, __m128i cnt);
VPSRAW __m128i _mm_mask_sra_epi16(__m128i s, __mmask8 k, __m128i a,
                                  __m128i cnt);
VPSRAW __m128i _mm_maskz_sra_epi16(__mmask8 k, __m128i a, __m128i cnt);
PSRAW : __m64 _mm_srai_pi16(__m64 m, int count) PSRAW
    : __m64 _mm_sra_pi16(__m64 m, __m64 count)(V) PSRAW
    : __m128i _mm_srai_epi16(__m128i m, int count)(V) PSRAW
    : __m128i _mm_sra_epi16(__m128i m, __m128i count) VPSRAW
    : __m256i _mm256_srai_epi16(__m256i m, int count) VPSRAW
    : __m256i _mm256_sra_epi16(__m256i m, __m128i count) PSRAD
    : __m64 _mm_srai_pi32(__m64 m, int count) PSRAD
    : __m64 _mm_sra_pi32(__m64 m, __m64 count)(V) PSRAD
    : __m128i _mm_srai_epi32(__m128i m, int count)(V) PSRAD
    : __m128i _mm_sra_epi32(__m128i m, __m128i count) VPSRAD
    : __m256i _mm256_srai_epi32(__m256i m, int count) VPSRAD
    : __m256i _mm256_sra_epi32(__m256i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

VEX-encoded instructions:

Syntax with RM/RVM operand encoding, see Exceptions Type 4.

Syntax with MI/VMI operand encoding, see Exceptions Type 7.

EVEX-encoded VPSRAW, see Exceptions Type E4NF.nb.

EVEX-encoded VPSRAD/Q:

Syntax with M128 operand encoding, see Exceptions Type E4NF.nb.

Syntax with FVI operand encoding, see Exceptions Type E4.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..