모두의 코드
VCVTPS2UDQ (Intel x86/64 assembly instruction)
VCVTPS2UDQ
Convert Packed Single-Precision Floating-Point Values to Packed Unsigned Doubleword Integer Values
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
| FV | V/V | AVX512VL | Convert four packed single precision floating-point values from xmm2/m128/m32bcst to four packed unsigned doubleword values in xmm1 subject to writemask k1. |
| FV | V/V | AVX512VL | Convert eight packed single precision floating-point values from ymm2/m256/m32bcst to eight packed unsigned doubleword values in ymm1 subject to writemask k1. |
| FV | V/V | AVX512F | Convert sixteen packed single-precision floating-point values from zmm2/m512/m32bcst to sixteen packed unsigned doubleword values in zmm1 subject to writemask k1. |
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Description
Converts sixteen packed single-precision floating-point values in the source operand to sixteen unsigned double-word integers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register or the embedded rounding control bits. If a converted result cannot be represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w - 1 is returned, where w represents the number of bits in the destination format.
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTPS2UDQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_RM(EVEX.RC); ELSE SET_RM(MXCSR.RM); FI; FOR j <- 0 TO KL-1 i <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- Convert_Single_Precision_Floating_Point_To_UInteger(SRC[i+31:i]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
VCVTPS2UDQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j <- 0 TO KL-1 i <- j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] <- Convert_Single_Precision_Floating_Point_To_UInteger(SRC[31:0]) ELSE DEST[i+31:i] <- Convert_Single_Precision_Floating_Point_To_UInteger(SRC[i+31:i]) FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPS2UDQ __m512i _mm512_cvtps_epu32(__m512 a); VCVTPS2UDQ __m512i _mm512_mask_cvtps_epu32(__m512i s, __mmask16 k, __m512 a); VCVTPS2UDQ __m512i _mm512_maskz_cvtps_epu32(__mmask16 k, __m512 a); VCVTPS2UDQ __m512i _mm512_cvt_roundps_epu32(__m512 a, int r); VCVTPS2UDQ __m512i _mm512_mask_cvt_roundps_epu32(__m512i s, __mmask16 k, __m512 a, int r); VCVTPS2UDQ __m512i _mm512_maskz_cvt_roundps_epu32(__mmask16 k, __m512 a, int r); VCVTPS2UDQ __m256i _mm256_cvtps_epu32(__m256d a); VCVTPS2UDQ __m256i _mm256_mask_cvtps_epu32(__m256i s, __mmask8 k, __m256 a); VCVTPS2UDQ __m256i _mm256_maskz_cvtps_epu32(__mmask8 k, __m256 a); VCVTPS2UDQ __m128i _mm_cvtps_epu32(__m128 a); VCVTPS2UDQ __m128i _mm_mask_cvtps_epu32(__m128i s, __mmask8 k, __m128 a); VCVTPS2UDQ __m128i _mm_maskz_cvtps_epu32(__mmask8 k, __m128 a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
댓글을 불러오는 중입니다..