모두의 코드
VEXTRACTI128, VEXTRACTI32x4, VEXTRACTI64x2, VEXTRACTI32x8, VEXTRACTI64x4s (Intel x86/64 assembly instruction)
VEXTRACTI128, VEXTRACTI32x4, VEXTRACTI64x2, VEXTRACTI32x8, VEXTRACTI64x4
Extract packed Integer Values
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
| RMI | V/V | AVX2 | Extract 128 bits of integer data from ymm2 and store results in xmm1/m128. |
| T4 | V/V | AVX512VL | Extract 128 bits of double-word integer values from ymm2 and store results in xmm1/m128 subject to writemask k1. |
| T4 | V/V | AVX512F | Extract 128 bits of double-word integer values from zmm2 and store results in xmm1/m128 subject to writemask k1. |
| T2 | V/V | AVX512VL | Extract 128 bits of quad-word integer values from ymm2 and store results in xmm1/m128 subject to writemask k1. |
| T2 | V/V | AVX512DQ | Extract 128 bits of quad-word integer values from zmm2 and store results in xmm1/m128 subject to writemask k1. |
| T8 | V/V | AVX512DQ | Extract 256 bits of double-word integer values from zmm2 and store results in ymm1/m256 subject to writemask k1. |
| T4 | V/V | AVX512F | Extract 256 bits of quad-word integer values from zmm2 and store results in ymm1/m256 subject to writemask k1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RMI | ModRM:r/m (w) | ModRM:reg (r) | Imm8 | NA |
T2, T4, T8 | ModRM:r/m (w) | ModRM:reg (r) | Imm8 | NA |
Description
VEXTRACTI128/VEXTRACTI32x4 and VEXTRACTI64x2 extract 128-bits of doubleword integer values from the source operand (the second operand) and store to the low 128-bit of the destination operand (the first operand). The 128-bit data extraction occurs at an 128-bit granular offset specified by imm8[0] (256-bit) or imm8[1:0] as the multiply factor. The destination may be either a vector register or an 128-bit memory location.
VEXTRACTI32x4: The low 128-bit of the destination operand is updated at 32-bit granularity according to the writemask.
VEXTRACTI64x2: The low 128-bit of the destination operand is updated at 64-bit granularity according to the writemask.
VEXTRACTI32x8 and VEXTRACTI64x4 extract 256-bits of quadword integer values from the source operand (the second operand) and store to the low 256-bit of the destination operand (the first operand). The 256-bit data extraction occurs at an 256-bit granular offset specified by imm8[0] (256-bit) or imm8[0] as the multiply factor The destination may be either a vector register or a 256-bit memory location.
VEXTRACTI32x8: The low 256-bit of the destination operand is updated at 32-bit granularity according to the writemask.
VEXTRACTI64x4: The low 256-bit of the destination operand is updated at 64-bit granularity according to the writemask.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
The high 7 bits (6 bits in EVEX.512) of the immediate are ignored.
If VEXTRACTI128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an #UD exception.
Operation
VEXTRACTI32x4 (EVEX encoded versions) when destination is a register
VL = 256, 512 IF VL = 256 CASE (imm8[0]) OF 0: TMP_DEST[127:0] <- SRC1[127:0] 1: TMP_DEST[127:0] <- SRC1[255:128] ESAC. FI; IF VL = 512 CASE (imm8[1:0]) OF 00: TMP_DEST[127:0] <- SRC1[127:0] 01: TMP_DEST[127:0] <- SRC1[255:128] 10: TMP_DEST[127:0] <- SRC1[383:256] 11: TMP_DEST[127:0] <- SRC1[511:384] ESAC. FI; FOR j <- 0 TO 3 i <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- TMP_DEST[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:128] <- 0
VEXTRACTI32x4 (EVEX encoded versions) when destination is memory
VL = 256, 512 IF VL = 256 CASE (imm8[0]) OF 0: TMP_DEST[127:0] <- SRC1[127:0] 1: TMP_DEST[127:0] <- SRC1[255:128] ESAC. FI; IF VL = 512 CASE (imm8[1:0]) OF 00: TMP_DEST[127:0] <- SRC1[127:0] 01: TMP_DEST[127:0] <- SRC1[255:128] 10: TMP_DEST[127:0] <- SRC1[383:256] 11: TMP_DEST[127:0] <- SRC1[511:384] ESAC. FI; FOR j <- 0 TO 3 i <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- TMP_DEST[i+31:i] ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFOR
VEXTRACTI64x2 (EVEX encoded versions) when destination is a register
VL = 256, 512 IF VL = 256 CASE (imm8[0]) OF 0: TMP_DEST[127:0] <- SRC1[127:0] 1: TMP_DEST[127:0] <- SRC1[255:128] ESAC. FI; IF VL = 512 CASE (imm8[1:0]) OF 00: TMP_DEST[127:0] <- SRC1[127:0] 01: TMP_DEST[127:0] <- SRC1[255:128] 10: TMP_DEST[127:0] <- SRC1[383:256] 11: TMP_DEST[127:0] <- SRC1[511:384] ESAC. FI; FOR j <- 0 TO 1 i <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] <- TMP_DEST[i+63:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+63:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:128] <- 0
VEXTRACTI64x2 (EVEX encoded versions) when destination is memory
VL = 256, 512 IF VL = 256 CASE (imm8[0]) OF 0: TMP_DEST[127:0] <- SRC1[127:0] 1: TMP_DEST[127:0] <- SRC1[255:128] ESAC. FI; IF VL = 512 CASE (imm8[1:0]) OF 00: TMP_DEST[127:0] <- SRC1[127:0] 01: TMP_DEST[127:0] <- SRC1[255:128] 10: TMP_DEST[127:0] <- SRC1[383:256] 11: TMP_DEST[127:0] <- SRC1[511:384] ESAC. FI; FOR j <- 0 TO 1 i <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] <- TMP_DEST[i+63:i] ELSE *DEST[i+63:i] remains unchanged* ; merging-masking FI; ENDFOR
VEXTRACTI32x8 (EVEX.U1.512 encoded version) when destination is a register
VL = 512 CASE (imm8[0]) OF 0: TMP_DEST[255:0] <- SRC1[255:0] 1: TMP_DEST[255:0] <- SRC1[511:256] ESAC. FOR j <- 0 TO 7 i <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- TMP_DEST[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:256] <- 0
VEXTRACTI32x8 (EVEX.U1.512 encoded version) when destination is memory
CASE (imm8[0]) OF 0: TMP_DEST[255:0] <- SRC1[255:0] 1: TMP_DEST[255:0] <- SRC1[511:256] ESAC. FOR j <- 0 TO 7 i <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- TMP_DEST[i+31:i] ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFOR
VEXTRACTI64x4 (EVEX.512 encoded version) when destination is a register
VL = 512 CASE (imm8[0]) OF 0: TMP_DEST[255:0] <- SRC1[255:0] 1: TMP_DEST[255:0] <- SRC1[511:256] ESAC. FOR j <- 0 TO 3 i <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] <- TMP_DEST[i+63:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+63:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:256] <- 0
VEXTRACTI64x4 (EVEX.512 encoded version) when destination is memory
CASE (imm8[0]) OF 0: TMP_DEST[255:0] <- SRC1[255:0] 1: TMP_DEST[255:0] <- SRC1[511:256] ESAC. FOR j <- 0 TO 3 i <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] <- TMP_DEST[i+63:i] ELSE *DEST[i+63:i] remains unchanged* ; merging-masking FI; ENDFOR
VEXTRACTI128 (memory destination form)
CASE (imm8[0]) OF 0: DEST[127:0] <- SRC1[127:0] 1: DEST[127:0] <- SRC1[255:128] ESAC.
VEXTRACTI128 (register destination form)
CASE (imm8[0]) OF 0: DEST[127:0] <- SRC1[127:0] 1: DEST[127:0] <- SRC1[255:128] ESAC. DEST[MAX_VL-1:128] <- 0
Intel C/C++ Compiler Intrinsic Equivalent
VEXTRACTI32x4 __m128i _mm512_extracti32x4_epi32(__m512i a, const int nidx); VEXTRACTI32x4 __m128i _mm512_mask_extracti32x4_epi32(__m128i s, __mmask8 k, __m512i a, const int nidx); VEXTRACTI32x4 __m128i _mm512_maskz_extracti32x4_epi32(__mmask8 k, __m512i a, const int nidx); VEXTRACTI32x4 __m128i _mm256_extracti32x4_epi32(__m256i a, const int nidx); VEXTRACTI32x4 __m128i _mm256_mask_extracti32x4_epi32(__m128i s, __mmask8 k, __m256i a, const int nidx); VEXTRACTI32x4 __m128i _mm256_maskz_extracti32x4_epi32(__mmask8 k, __m256i a, const int nidx); VEXTRACTI32x8 __m256i _mm512_extracti32x8_epi32(__m512i a, const int nidx); VEXTRACTI32x8 __m256i _mm512_mask_extracti32x8_epi32(__m256i s, __mmask8 k, __m512i a, const int nidx); VEXTRACTI32x8 __m256i _mm512_maskz_extracti32x8_epi32(__mmask8 k, __m512i a, const int nidx); VEXTRACTI64x2 __m128i _mm512_extracti64x2_epi64(__m512i a, const int nidx); VEXTRACTI64x2 __m128i _mm512_mask_extracti64x2_epi64(__m128i s, __mmask8 k, __m512i a, const int nidx); VEXTRACTI64x2 __m128i _mm512_maskz_extracti64x2_epi64(__mmask8 k, __m512i a, const int nidx); VEXTRACTI64x2 __m128i _mm256_extracti64x2_epi64(__m256i a, const int nidx); VEXTRACTI64x2 __m128i _mm256_mask_extracti64x2_epi64(__m128i s, __mmask8 k, __m256i a, const int nidx); VEXTRACTI64x2 __m128i _mm256_maskz_extracti64x2_epi64(__mmask8 k, __m256i a, const int nidx); VEXTRACTI64x4 __m256i _mm512_extracti64x4_epi64(__m512i a, const int nidx); VEXTRACTI64x4 __m256i _mm512_mask_extracti64x4_epi64(__m256i s, __mmask8 k, __m512i a, const int nidx); VEXTRACTI64x4 __m256i _mm512_maskz_extracti64x4_epi64(__mmask8 k, __m512i a, const int nidx); VEXTRACTI128 __m128i _mm256_extracti128_si256(__m256i a, int offset);
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instructions, see Exceptions Type 6;
EVEX-encoded instructions, see Exceptions Type E6NF.
#UD IF VEX.L = 0.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
댓글을 불러오는 중입니다..