모두의 코드
XADD (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 2496 번 읽혔습니다.

XADD

Exchange and Add

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode

Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C0 /r

XADD r/m8 r8

MR

Valid

Valid

Exchange r8 and r/m8; load sum into r/m8.

REX + 0F C0 /r

XADD r/m8* r8*

MR

Valid

N.E.

Exchange r8 and r/m8; load sum into r/m8.

0F C1 /r

XADD r/m16 r16

MR

Valid

Valid

Exchange r16 and r/m16; load sum into r/m16.

0F C1 /r

XADD r/m32 r32

MR

Valid

Valid

Exchange r32 and r/m32; load sum into r/m32.

REX.W + 0F C1 /r

XADD r/m64 r64

MR

Valid

N.E.

Exchange r64 and r/m64; load sum into r/m64.

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

MR

ModRM:r/m (r, w)

ModRM:reg (r, w)

NA

NA

Description

Exchanges the first operand (destination operand) with the second operand (source operand), then loads the sum of the two values into the destination operand. The destination operand can be a register or a memory location; the source operand is a register.

In 64-bit mode, the instruction's default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

IA-32 Architecture Compatibility

IA-32 processors earlier than the Intel486 processor do not recognize this instruction. If this instruction is used, you should provide an equivalent code sequence that runs on earlier processors.

Operation

TEMP <- SRC + DEST;
SRC <- DEST;
DEST <- TEMP;

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition, which is stored in the destination operand.

Protected Mode Exceptions

#GP(0)

  • If the destination is located in a non-writable segment.

  • If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

  • If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0)

  • If a memory operand effective address is outside the SS segment limit.

#PF(fault-code)

  • If a page fault occurs.

#AC(0)

  • If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3.

#UD

  • If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP

  • If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS

  • If a memory operand effective address is outside the SS segment limit.

#UD

  • If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0)

  • If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0)

  • If a memory operand effective address is outside the SS segment limit.

#PF(fault-code)

  • If a page fault occurs.

#AC(0)

  • If alignment checking is enabled and an unaligned memory reference is made.

#UD

  • If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)

  • If a memory address referencing the SS segment is in a non-canonical form.

#GP(0)

  • If the memory address is in a non-canonical form.

#PF(fault-code)

  • If a page fault occurs.

#AC(0)

  • If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3.

#UD

  • If the LOCK prefix is used but the destination is not a memory operand.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..