모두의 코드
MOVDQA, VMOVDQA32, VMOVDQA64s (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 1734 번 읽혔습니다.

MOVDQA, VMOVDQA32, VMOVDQA64

Move Aligned Packed Integer Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

66 0F 6F /r
MOVDQA xmm1 xmm2/m128

RM

V/V

SSE2

Move aligned packed integer values from xmm2/mem to xmm1.

66 0F 7F /r
MOVDQA xmm2/m128 xmm1

MR

V/V

SSE2

Move aligned packed integer values from xmm1 to xmm2/mem.

VEX.128.66.0F.WIG 6F /r
VMOVDQA xmm1 xmm2/m128

RM

V/V

AVX

Move aligned packed integer values from xmm2/mem to xmm1.

VEX.128.66.0F.WIG 7F /r
VMOVDQA xmm2/m128 xmm1

MR

V/V

AVX

Move aligned packed integer values from xmm1 to xmm2/mem.

VEX.256.66.0F.WIG 6F /r
VMOVDQA ymm1 ymm2/m256

RM

V/V

AVX

Move aligned packed integer values from ymm2/mem to ymm1.

VEX.256.66.0F.WIG 7F /r
VMOVDQA ymm2/m256 ymm1

MR

V/V

AVX

Move aligned packed integer values from ymm1 to ymm2/mem.

EVEX.128.66.0F.W0 6F /r
VMOVDQA32 xmm1 {k1}{z} xmm2/m128

FVM-RM

V/V

AVX512VL
AVX512F

Move aligned packed doubleword integer values from xmm2/m128 to xmm1 using writemask k1.

EVEX.256.66.0F.W0 6F /r
VMOVDQA32 ymm1 {k1}{z} ymm2/m256

FVM-RM

V/V

AVX512VL
AVX512F

Move aligned packed doubleword integer values from ymm2/m256 to ymm1 using writemask k1.

EVEX.512.66.0F.W0 6F /r
VMOVDQA32 zmm1 {k1}{z} zmm2/m512

FVM-RM

V/V

AVX512F

Move aligned packed doubleword integer values from zmm2/m512 to zmm1 using writemask k1.

EVEX.128.66.0F.W0 7F /r
VMOVDQA32 xmm2/m128 {k1}{z} xmm1

FVM-MR

V/V

AVX512VL
AVX512F

Move aligned packed doubleword integer values from xmm1 to xmm2/m128 using writemask k1.

EVEX.256.66.0F.W0 7F /r
VMOVDQA32 ymm2/m256 {k1}{z} ymm1

FVM-MR

V/V

AVX512VL
AVX512F

Move aligned packed doubleword integer values from ymm1 to ymm2/m256 using writemask k1.

EVEX.512.66.0F.W0 7F /r
VMOVDQA32 zmm2/m512 {k1}{z} zmm1

FVM-MR

V/V

AVX512F

Move aligned packed doubleword integer values from zmm1 to zmm2/m512 using writemask k1.

EVEX.128.66.0F.W1 6F /r
VMOVDQA64 xmm1 {k1}{z} xmm2/m128

FVM-RM

V/V

AVX512VL
AVX512F

Move aligned quadword integer values from xmm2/m128 to xmm1 using writemask k1.

EVEX.256.66.0F.W1 6F /r
VMOVDQA64 ymm1 {k1}{z} ymm2/m256

FVM-RM

V/V

AVX512VL
AVX512F

Move aligned quadword integer values from ymm2/m256 to ymm1 using writemask k1.

EVEX.512.66.0F.W1 6F /r
VMOVDQA64 zmm1 {k1}{z} zmm2/m512

FVM-RM

V/V

AVX512F

Move aligned packed quadword integer values from zmm2/m512 to zmm1 using writemask k1.

EVEX.128.66.0F.W1 7F /r
VMOVDQA64 xmm2/m128 {k1}{z} xmm1

FVM-MR

V/V

AVX512VL
AVX512F

Move aligned packed quadword integer values from xmm1 to xmm2/m128 using writemask k1.

EVEX.256.66.0F.W1 7F /r
VMOVDQA64 ymm2/m256 {k1}{z} ymm1

FVM-MR

V/V

AVX512VL
AVX512F

Move aligned packed quadword integer values from ymm1 to ymm2/m256 using writemask k1.

EVEX.512.66.0F.W1 7F /r
VMOVDQA64 zmm2/m512 {k1}{z} zmm1

FVM-MR

V/V

AVX512F

Move aligned packed quadword integer values from zmm1 to zmm2/m512 using writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

MR

ModRM:r/m (w)

ModRM:reg (r)

NA

NA

FVM-RM

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

FVM-MR

ModRM:r/m (w)

ModRM:reg (r)

NA

NA

Description

Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

EVEX encoded versions:

Moves 128, 256 or 512 bits of packed doubleword/quadword integer values from the source operand (the second operand) to the destination operand (the first operand). This instruction can be used to load a vector register from an int32/int64 memory location, to store the contents of a vector register into an int32/int64 memory location, or to move data between two ZMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 16 (EVEX.128)/32(EVEX.256)/64(EVEX.512)-byte boundary or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the VMOVDQU instruction.

The destination operand is updated at 32-bit (VMOVDQA32) or 64-bit (VMOVDQA64) granularity according to the writemask.

VEX.256 encoded version:

Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers.

When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the VMOVDQU instruction. Bits (MAXVL-1:256) of the destination register are zeroed.

128-bit versions:

Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers.

When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the VMOVDQU instruction.

128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding ZMM destination register remain unchanged.

VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed.

Operation

VMOVDQA32 (EVEX encoded versions, register-copy form)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  SRC[i+31:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  DEST[i+31:i] <-  0  ; zeroing-masking
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VMOVDQA32 (EVEX encoded versions, store-form)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i]<-  SRC[i+31:i]
          ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
    FI;
ENDFOR;

VMOVDQA32 (EVEX encoded versions, load-form)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  SRC[i+31:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  DEST[i+31:i] <-  0  ; zeroing-masking
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VMOVDQA64 (EVEX encoded versions, register-copy form)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN DEST[i+63:i] <-  SRC[i+63:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  DEST[i+63:i] <-  0  ; zeroing-masking
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VMOVDQA64 (EVEX encoded versions, store-form)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN DEST[i+63:i]<-  SRC[i+63:i]
          ELSE *DEST[i+63:i] remains unchanged* ; merging-masking
    FI;
ENDFOR;

VMOVDQA64 (EVEX encoded versions, load-form)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN DEST[i+63:i] <-  SRC[i+63:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  DEST[i+63:i] <-  0  ; zeroing-masking
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VMOVDQA (VEX.256 encoded version, load - and register copy)

DEST[255:0] <-  SRC[255:0]
DEST[MAX_VL-1:256] <-  0

VMOVDQA (VEX.256 encoded version, store-form)

DEST[255:0] <-  SRC[255:0]

VMOVDQA (VEX.128 encoded version)

DEST[127:0] <-  SRC[127:0]
DEST[MAX_VL-1:128] <-  0

VMOVDQA (128-bit load- and register-copy- form Legacy SSE version)

DEST[127:0] <-  SRC[127:0]
DEST[MAX_VL-1:128] (Unmodified)

(V)MOVDQA (128-bit store-form version)

DEST[127:0] <-  SRC[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

VMOVDQA32 __m512i _mm512_load_epi32(void *sa);
VMOVDQA32 __m512i _mm512_mask_load_epi32(__m512i s, __mmask16 k, void *sa);
VMOVDQA32 __m512i _mm512_maskz_load_epi32(__mmask16 k, void *sa);
VMOVDQA32 void _mm512_store_epi32(void *d, __m512i a);
VMOVDQA32 void _mm512_mask_store_epi32(void *d, __mmask16 k, __m512i a);
VMOVDQA32 __m256i _mm256_mask_load_epi32(__m256i s, __mmask8 k, void *sa);
VMOVDQA32 __m256i _mm256_maskz_load_epi32(__mmask8 k, void *sa);
VMOVDQA32 void _mm256_store_epi32(void *d, __m256i a);
VMOVDQA32 void _mm256_mask_store_epi32(void *d, __mmask8 k, __m256i a);
VMOVDQA32 __m128i _mm_mask_load_epi32(__m128i s, __mmask8 k, void *sa);
VMOVDQA32 __m128i _mm_maskz_load_epi32(__mmask8 k, void *sa);
VMOVDQA32 void _mm_store_epi32(void *d, __m128i a);
VMOVDQA32 void _mm_mask_store_epi32(void *d, __mmask8 k, __m128i a);
VMOVDQA64 __m512i _mm512_load_epi64(void *sa);
VMOVDQA64 __m512i _mm512_mask_load_epi64(__m512i s, __mmask8 k, void *sa);
VMOVDQA64 __m512i _mm512_maskz_load_epi64(__mmask8 k, void *sa);
VMOVDQA64 void _mm512_store_epi64(void *d, __m512i a);
VMOVDQA64 void _mm512_mask_store_epi64(void *d, __mmask8 k, __m512i a);
VMOVDQA64 __m256i _mm256_mask_load_epi64(__m256i s, __mmask8 k, void *sa);
VMOVDQA64 __m256i _mm256_maskz_load_epi64(__mmask8 k, void *sa);
VMOVDQA64 void _mm256_store_epi64(void *d, __m256i a);
VMOVDQA64 void _mm256_mask_store_epi64(void *d, __mmask8 k, __m256i a);
VMOVDQA64 __m128i _mm_mask_load_epi64(__m128i s, __mmask8 k, void *sa);
VMOVDQA64 __m128i _mm_maskz_load_epi64(__mmask8 k, void *sa);
VMOVDQA64 void _mm_store_epi64(void *d, __m128i a);
VMOVDQA64 void _mm_mask_store_epi64(void *d, __mmask8 k, __m128i a);
MOVDQA void __m256i _mm256_load_si256(__m256i *p);
MOVDQA _mm256_store_si256(_m256i *p, __m256i a);
MOVDQA __m128i _mm_load_si128(__m128i *p);
MOVDQA void _mm_store_si128(__m128i *p, __m128i a);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type1.SSE2;

EVEX-encoded instruction, see Exceptions Type E1.

#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..