모두의 코드
PACKUSWB (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 678 번 읽혔습니다.

PACKUSWB

Pack with Unsigned Saturation

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature Flag

Description

0F 67 /r\footnote{1}
PACKUSWB mm mm/m64

RM

V/V

MMX

Converts 4 signed word integers from mm and 4 signed word integers from mm/m64 into 8 unsigned byte integers in mm using unsigned saturation.

66 0F 67 /r
PACKUSWB xmm1 xmm2/m128

RM

V/V

SSE2

Converts 8 signed word integers from xmm1 and 8 signed word integers from xmm2/m128 into 16 unsigned byte integers in xmm1 using unsigned saturation.

VEX.NDS.128.66.0F.WIG 67 /r
VPACKUSWB xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Converts 8 signed word integers from xmm2 and 8 signed word integers from xmm3/m128 into 16 unsigned byte integers in xmm1 using unsigned saturation.

VEX.NDS.256.66.0F.WIG 67 /r
VPACKUSWB ymm1 ymm2 ymm3/m256

RVM

V/V

AVX2

Converts 16 signed word integers from ymm2 and 16signed word integers from ymm3/m256 into 32 unsigned byte integers in ymm1 using unsigned saturation.

EVEX.NDS.128.66.0F.WIG 67 /r
VPACKUSWB xmm1{k1}{z} xmm2 xmm3/m128

FVM

V/V

AVX512VL
AVX512BW

Converts signed word integers from xmm2 and signed word integers from xmm3/m128 into unsigned byte integers in xmm1 using unsigned saturation under writemask k1.

EVEX.NDS.256.66.0F.WIG 67 /r
VPACKUSWB ymm1{k1}{z} ymm2 ymm3/m256

FVM

V/V

AVX512VL
AVX512BW

Converts signed word integers from ymm2 and signed word integers from ymm3/m256 into unsigned byte integers in ymm1 using unsigned saturation under writemask k1.

EVEX.NDS.512.66.0F.WIG 67 /r
VPACKUSWB zmm1{k1}{z} zmm2 zmm3/m512

FVM

V/V

AVX512BW

Converts signed word integers from zmm2 and signed word integers from zmm3/m512 into unsigned byte integers in zmm1 using unsigned saturation under writemask k1.

  1. See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FVM

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Converts 4, 8, 16 or 32 signed word integers from the destination operand (first operand) and 4, 8, 16 or 32 signed word integers from the source operand (second operand) into 8, 16, 32 or 64 unsigned byte integers and stores the result in the destination operand. (See Figure 4-6 for an example of the packing operation.) If a signed word integer value is beyond the range of an unsigned byte integer (that is, greater than FFH or less than 00H), the satu-rated unsigned byte integer value of FFH or 00H, respectively, is stored in the destination.

EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM register or a 512-bit memory location. The destination operand is a ZMM register.

VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed.

VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding register destination are unmodified.

Operation

PACKUSWB (with 64-bit operands)

    DEST[7:0] <- SaturateSignedWordToUnsignedByte DEST[15:0]; 
    DEST[15:8] <- SaturateSignedWordToUnsignedByte DEST[31:16];
    DEST[23:16] <- SaturateSignedWordToUnsignedByte DEST[47:32];
    DEST[31:24] <- SaturateSignedWordToUnsignedByte DEST[63:48];
    DEST[39:32] <- SaturateSignedWordToUnsignedByte SRC[15:0];
    DEST[47:40] <- SaturateSignedWordToUnsignedByte SRC[31:16];
    DEST[55:48] <- SaturateSignedWordToUnsignedByte SRC[47:32];
    DEST[63:56] <- SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWB (Legacy SSE instruction)

    DEST[7:0]<- SaturateSignedWordToUnsignedByte (DEST[15:0]);
    DEST[15:8] <- SaturateSignedWordToUnsignedByte (DEST[31:16]);
    DEST[23:16] <- SaturateSignedWordToUnsignedByte (DEST[47:32]);
    DEST[31:24] <-  SaturateSignedWordToUnsignedByte (DEST[63:48]);
    DEST[39:32] <-  SaturateSignedWordToUnsignedByte (DEST[79:64]);
    DEST[47:40] <-  SaturateSignedWordToUnsignedByte (DEST[95:80]);
    DEST[55:48] <-  SaturateSignedWordToUnsignedByte (DEST[111:96]);
    DEST[63:56] <-  SaturateSignedWordToUnsignedByte (DEST[127:112]);
    DEST[71:64] <-  SaturateSignedWordToUnsignedByte (SRC[15:0]);
    DEST[79:72] <-  SaturateSignedWordToUnsignedByte (SRC[31:16]);
    DEST[87:80] <-  SaturateSignedWordToUnsignedByte (SRC[47:32]);
    DEST[95:88] <-  SaturateSignedWordToUnsignedByte (SRC[63:48]);
    DEST[103:96] <-  SaturateSignedWordToUnsignedByte (SRC[79:64]);
    DEST[111:104] <-  SaturateSignedWordToUnsignedByte (SRC[95:80]);
    DEST[119:112] <-  SaturateSignedWordToUnsignedByte (SRC[111:96]);
    DEST[127:120] <-  SaturateSignedWordToUnsignedByte (SRC[127:112]);

PACKUSWB (VEX.128 encoded version)

    DEST[7:0]<-  SaturateSignedWordToUnsignedByte (SRC1[15:0]);
    DEST[15:8] <- SaturateSignedWordToUnsignedByte (SRC1[31:16]);
    DEST[23:16] <- SaturateSignedWordToUnsignedByte (SRC1[47:32]);
    DEST[31:24] <-  SaturateSignedWordToUnsignedByte (SRC1[63:48]);
    DEST[39:32] <-  SaturateSignedWordToUnsignedByte (SRC1[79:64]);
    DEST[47:40] <-  SaturateSignedWordToUnsignedByte (SRC1[95:80]);
    DEST[55:48] <-  SaturateSignedWordToUnsignedByte (SRC1[111:96]);
    DEST[63:56] <-  SaturateSignedWordToUnsignedByte (SRC1[127:112]);
    DEST[71:64] <-  SaturateSignedWordToUnsignedByte (SRC2[15:0]);
    DEST[79:72] <-  SaturateSignedWordToUnsignedByte (SRC2[31:16]);
    DEST[87:80] <-  SaturateSignedWordToUnsignedByte (SRC2[47:32]);
    DEST[95:88] <-  SaturateSignedWordToUnsignedByte (SRC2[63:48]);
    DEST[103:96] <-  SaturateSignedWordToUnsignedByte (SRC2[79:64]);
    DEST[111:104] <-  SaturateSignedWordToUnsignedByte (SRC2[95:80]);
DEST[119:112] <-  SaturateSignedWordToUnsignedByte (SRC2[111:96]);
    DEST[127:120] <-  SaturateSignedWordToUnsignedByte (SRC2[127:112]);
    DEST[VLMAX-1:128] <-  0;

VPACKUSWB (VEX.256 encoded version)

    DEST[7:0]<-  SaturateSignedWordToUnsignedByte (SRC1[15:0]);
    DEST[15:8] <- SaturateSignedWordToUnsignedByte (SRC1[31:16]);
    DEST[23:16] <- SaturateSignedWordToUnsignedByte (SRC1[47:32]);
    DEST[31:24] <-  SaturateSignedWordToUnsignedByte (SRC1[63:48]);
    DEST[39:32] <- SaturateSignedWordToUnsignedByte (SRC1[79:64]);
    DEST[47:40] <-  SaturateSignedWordToUnsignedByte (SRC1[95:80]);
    DEST[55:48] <-  SaturateSignedWordToUnsignedByte (SRC1[111:96]);
    DEST[63:56] <-  SaturateSignedWordToUnsignedByte (SRC1[127:112]);
    DEST[71:64] <- SaturateSignedWordToUnsignedByte (SRC2[15:0]);
    DEST[79:72] <-  SaturateSignedWordToUnsignedByte (SRC2[31:16]);
    DEST[87:80] <-  SaturateSignedWordToUnsignedByte (SRC2[47:32]);
    DEST[95:88] <-  SaturateSignedWordToUnsignedByte (SRC2[63:48]);
    DEST[103:96] <-  SaturateSignedWordToUnsignedByte (SRC2[79:64]);
    DEST[111:104] <-  SaturateSignedWordToUnsignedByte (SRC2[95:80]);
    DEST[119:112] <-  SaturateSignedWordToUnsignedByte (SRC2[111:96]);
    DEST[127:120] <-  SaturateSignedWordToUnsignedByte (SRC2[127:112]);
    DEST[135:128]<-  SaturateSignedWordToUnsignedByte (SRC1[143:128]);
    DEST[143:136] <- SaturateSignedWordToUnsignedByte (SRC1[159:144]);
    DEST[151:144] <- SaturateSignedWordToUnsignedByte (SRC1[175:160]);
    DEST[159:152] <- SaturateSignedWordToUnsignedByte (SRC1[191:176]);
    DEST[167:160] <-  SaturateSignedWordToUnsignedByte (SRC1[207:192]);
    DEST[175:168] <-  SaturateSignedWordToUnsignedByte (SRC1[223:208]);
    DEST[183:176] <-  SaturateSignedWordToUnsignedByte (SRC1[239:224]);
    DEST[191:184] <-  SaturateSignedWordToUnsignedByte (SRC1[255:240]);
    DEST[199:192] <-  SaturateSignedWordToUnsignedByte (SRC2[143:128]);
    DEST[207:200] <-  SaturateSignedWordToUnsignedByte (SRC2[159:144]);
    DEST[215:208] <-  SaturateSignedWordToUnsignedByte (SRC2[175:160]);
    DEST[223:216] <-  SaturateSignedWordToUnsignedByte (SRC2[191:176]);
    DEST[231:224] <-  SaturateSignedWordToUnsignedByte (SRC2[207:192]);
    DEST[239:232] <-  SaturateSignedWordToUnsignedByte (SRC2[223:208]);
    DEST[247:240] <-  SaturateSignedWordToUnsignedByte (SRC2[239:224]);
    DEST[255:248] <-  SaturateSignedWordToUnsignedByte (SRC2[255:240]);

VPACKUSWB (EVEX encoded versions)

(KL, VL) = (16, 128), (32, 256), (64, 512)
TMP_DEST[7:0] <-  SaturateSignedWordToUnsignedByte (SRC1[15:0]);
TMP_DEST[15:8] <-  SaturateSignedWordToUnsignedByte (SRC1[31:16]); 
TMP_DEST[23:16] <-  SaturateSignedWordToUnsignedByte (SRC1[47:32]);
TMP_DEST[31:24] <-  SaturateSignedWordToUnsignedByte (SRC1[63:48]);
TMP_DEST[39:32] <-  SaturateSignedWordToUnsignedByte (SRC1[79:64]);
TMP_DEST[47:40] <-  SaturateSignedWordToUnsignedByte (SRC1[95:80]);
TMP_DEST[55:48] <-  SaturateSignedWordToUnsignedByte (SRC1[111:96]);
TMP_DEST[63:56] <-  SaturateSignedWordToUnsignedByte (SRC1[127:112]);
TMP_DEST[71:64] <-  SaturateSignedWordToUnsignedByte (SRC2[15:0]);
TMP_DEST[79:72] <-  SaturateSignedWordToUnsignedByte (SRC2[31:16]);
TMP_DEST[87:80] <-  SaturateSignedWordToUnsignedByte (SRC2[47:32]);
TMP_DEST[95:88] <-  SaturateSignedWordToUnsignedByte (SRC2[63:48]);
TMP_DEST[103:96] <-  SaturateSignedWordToUnsignedByte (SRC2[79:64]);
TMP_DEST[111:104] <-  SaturateSignedWordToUnsignedByte (SRC2[95:80]);
TMP_DEST[119:112] <-  SaturateSignedWordToUnsignedByte (SRC2[111:96]);
TMP_DEST[127:120] <-  SaturateSignedWordToUnsignedByte (SRC2[127:112]);
IF VL >= 256
    TMP_DEST[135:128]<-  SaturateSignedWordToUnsignedByte (SRC1[143:128]);
    TMP_DEST[143:136] <-  SaturateSignedWordToUnsignedByte (SRC1[159:144]); 
    TMP_DEST[151:144] <-  SaturateSignedWordToUnsignedByte (SRC1[175:160]);
    TMP_DEST[159:152] <-  SaturateSignedWordToUnsignedByte (SRC1[191:176]);
    TMP_DEST[167:160] <-  SaturateSignedWordToUnsignedByte (SRC1[207:192]);
    TMP_DEST[175:168] <-  SaturateSignedWordToUnsignedByte (SRC1[223:208]);
    TMP_DEST[183:176] <-  SaturateSignedWordToUnsignedByte (SRC1[239:224]);
    TMP_DEST[191:184] <-  SaturateSignedWordToUnsignedByte (SRC1[255:240]);
    TMP_DEST[199:192] <-  SaturateSignedWordToUnsignedByte (SRC2[143:128]);
    TMP_DEST[207:200] <-  SaturateSignedWordToUnsignedByte (SRC2[159:144]);
    TMP_DEST[215:208] <-  SaturateSignedWordToUnsignedByte (SRC2[175:160]);
    TMP_DEST[223:216] <-  SaturateSignedWordToUnsignedByte (SRC2[191:176]);
    TMP_DEST[231:224] <-  SaturateSignedWordToUnsignedByte (SRC2[207:192]);
    TMP_DEST[239:232] <-  SaturateSignedWordToUnsignedByte (SRC2[223:208]);
    TMP_DEST[247:240] <-  SaturateSignedWordToUnsignedByte (SRC2[239:224]);
    TMP_DEST[255:248] <-  SaturateSignedWordToUnsignedByte (SRC2[255:240]);
FI;
IF VL >= 512
    TMP_DEST[263:256] <-  SaturateSignedWordToUnsignedByte (SRC1[271:256]);
    TMP_DEST[271:264] <-  SaturateSignedWordToUnsignedByte (SRC1[287:272]); 
    TMP_DEST[279:272] <-  SaturateSignedWordToUnsignedByte (SRC1[303:288]);
    TMP_DEST[287:280] <-  SaturateSignedWordToUnsignedByte (SRC1[319:304]);
    TMP_DEST[295:288] <-  SaturateSignedWordToUnsignedByte (SRC1[335:320]);
    TMP_DEST[303:296] <-  SaturateSignedWordToUnsignedByte (SRC1[351:336]);
    TMP_DEST[311:304] <-  SaturateSignedWordToUnsignedByte (SRC1[367:352]);
    TMP_DEST[319:312] <-  SaturateSignedWordToUnsignedByte (SRC1[383:368]);
    TMP_DEST[327:320] <-  SaturateSignedWordToUnsignedByte (SRC2[271:256]);
    TMP_DEST[335:328] <-  SaturateSignedWordToUnsignedByte (SRC2[287:272]); 
    TMP_DEST[343:336] <-  SaturateSignedWordToUnsignedByte (SRC2[303:288]);
    TMP_DEST[351:344] <-  SaturateSignedWordToUnsignedByte (SRC2[319:304]);
    TMP_DEST[359:352] <-  SaturateSignedWordToUnsignedByte (SRC2[335:320]);
    TMP_DEST[367:360] <-  SaturateSignedWordToUnsignedByte (SRC2[351:336]);
    TMP_DEST[375:368] <-  SaturateSignedWordToUnsignedByte (SRC2[367:352]);
    TMP_DEST[383:376] <-  SaturateSignedWordToUnsignedByte (SRC2[383:368]);
    TMP_DEST[391:384] <-  SaturateSignedWordToUnsignedByte (SRC1[399:384]);
    TMP_DEST[399:392] <-  SaturateSignedWordToUnsignedByte (SRC1[415:400]);
    TMP_DEST[407:400] <-  SaturateSignedWordToUnsignedByte (SRC1[431:416]);
    TMP_DEST[415:408] <-  SaturateSignedWordToUnsignedByte (SRC1[447:432]);
    TMP_DEST[423:416] <-  SaturateSignedWordToUnsignedByte (SRC1[463:448]);
    TMP_DEST[431:424] <-  SaturateSignedWordToUnsignedByte (SRC1[479:464]);
    TMP_DEST[439:432] <-  SaturateSignedWordToUnsignedByte (SRC1[495:480]);
    TMP_DEST[447:440] <-  SaturateSignedWordToUnsignedByte (SRC1[511:496]);
    TMP_DEST[455:448] <-  SaturateSignedWordToUnsignedByte (SRC2[399:384]);
    TMP_DEST[463:456] <-  SaturateSignedWordToUnsignedByte (SRC2[415:400]);
    TMP_DEST[471:464] <-  SaturateSignedWordToUnsignedByte (SRC2[431:416]);
    TMP_DEST[479:472] <-  SaturateSignedWordToUnsignedByte (SRC2[447:432]);
    TMP_DEST[487:480] <-  SaturateSignedWordToUnsignedByte (SRC2[463:448]);
    TMP_DEST[495:488] <-  SaturateSignedWordToUnsignedByte (SRC2[479:464]);
TMP_DEST[503:496] <-  SaturateSignedWordToUnsignedByte (SRC2[495:480]);
    TMP_DEST[511:504] <-  SaturateSignedWordToUnsignedByte (SRC2[511:496]);
FI;
FOR j <-  0 TO KL-1
    i <-  j * 8
    IF k1[j] OR *no writemask*
          THEN 
                DEST[i+7:i] <-  TMP_DEST[i+7:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+7:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking
                            DEST[i+7:i] <-  0
                FI
    FI;
ENDFOR;
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalents

VPACKUSWB__m512i _mm512_packus_epi16(__m512i m1, __m512i m2);
VPACKUSWB__m512i _mm512_mask_packus_epi16(__m512i s, __mmask64 k, __m512i m1,
                                          __m512i m2);
VPACKUSWB__m512i _mm512_maskz_packus_epi16(__mmask64 k, __m512i m1, __m512i m2);
VPACKUSWB__m256i _mm256_mask_packus_epi16(__m256i s, __mmask32 k, __m256i m1,
                                          __m256i m2);
VPACKUSWB__m256i _mm256_maskz_packus_epi16(__mmask32 k, __m256i m1, __m256i m2);
VPACKUSWB__m128i _mm_mask_packus_epi16(__m128i s, __mmask16 k, __m128i m1,
                                       __m128i m2);
VPACKUSWB__m128i _mm_maskz_packus_epi16(__mmask16 k, __m128i m1, __m128i m2);
PACKUSWB : __m64 _mm_packs_pu16(__m64 m1, __m64 m2)(V) PACKUSWB
    : __m128i _mm_packus_epi16(__m128i m1, __m128i m2) VPACKUSWB
    : __m256i _mm256_packus_epi16(__m256i m1, __m256i m2);

Flags Affected

None

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded instruction, see Exceptions Type E4NF.nb.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..