모두의 코드
PCMPEQB, PCMPEQW, PCMPEQDs (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 725 번 읽혔습니다.

PCMPEQB, PCMPEQW, PCMPEQD

Compare Packed Data for Equal

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 74 /r\footnote{1}
PCMPEQB mm mm/m64

RM

V/V

MMX

Compare packed bytes in mm/m64 and mm for equality.

66 0F 74 /r
PCMPEQB xmm1 xmm2/m128

RM

V/V

SSE2

Compare packed bytes in xmm2/m128 and xmm1 for equality.

0F 75 /r\footnote{1}
PCMPEQW mm mm/m64

RM

V/V

MMX

Compare packed words in mm/m64 and mm for equality.

66 0F 75 /r
PCMPEQW xmm1 xmm2/m128

RM

V/V

SSE2

Compare packed words in xmm2/m128 and xmm1 for equality.

0F 76 /r\footnote{1}
PCMPEQD mm mm/m64

RM

V/V

MMX

Compare packed doublewords in mm/m64 and mm for equality.

66 0F 76 /r
PCMPEQD xmm1 xmm2/m128

RM

V/V

SSE2

Compare packed doublewords in xmm2/m128 and xmm1 for equality.

VEX.NDS.128.66.0F.WIG 74 /r
VPCMPEQB xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Compare packed bytes in xmm3/m128 and xmm2 for equality.

VEX.NDS.128.66.0F.WIG 75 /r
VPCMPEQW xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Compare packed words in xmm3/m128 and xmm2 for equality.

VEX.NDS.128.66.0F.WIG 76 /r
VPCMPEQD xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Compare packed doublewords in xmm3/m128 and xmm2 for equality.

VEX.NDS.256.66.0F.WIG 74 /r
VPCMPEQB ymm1 ymm2 ymm3 /m256

RVM

V/V

AVX2

Compare packed bytes in ymm3/m256 and ymm2 for equality.

VEX.NDS.256.66.0F.WIG 75 /r
VPCMPEQW ymm1 ymm2 ymm3 /m256

RVM

V/V

AVX2

Compare packed words in ymm3/m256 and ymm2 for equality.

VEX.NDS.256.66.0F.WIG 76 /r
VPCMPEQD ymm1 ymm2 ymm3 /m256

RVM

V/V

AVX2

Compare packed doublewords in ymm3/m256 and ymm2 for equality.

EVEX.NDS.128.66.0F.W0 76 /r
VPCMPEQD k1 {k2} xmm2 xmm3/m128/m32bcst

FV

V/V

AVX512VL
AVX512F

Compare Equal between int32 vector xmm2 and int32 vector xmm3/m128/m32bcst, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask.

EVEX.NDS.256.66.0F.W0 76 /r
VPCMPEQD k1 {k2} ymm2 ymm3/m256/m32bcst

FV

V/V

AVX512VL
AVX512F

Compare Equal between int32 vector ymm2 and int32 vector ymm3/m256/m32bcst, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask.

EVEX.NDS.512.66.0F.W0 76 /r
VPCMPEQD k1 {k2} zmm2 zmm3/m512/m32bcst

FV

V/V

AVX512F

Compare Equal between int32 vectors in zmm2 and zmm3/m512/m32bcst, and set destination k1 according to the comparison results under writemask k2.

EVEX.NDS.128.66.0F.WIG 74 /r
VPCMPEQB k1 {k2} xmm2 xmm3 /m128

FVM

V/V

AVX512VL
AVX512BW

Compare packed bytes in xmm3/m128 and xmm2 for equality and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask.

EVEX.NDS.256.66.0F.WIG 74 /r
VPCMPEQB k1 {k2}, ymm2, ymm3 /m256

FVM

V/V

AVX512V
L
AVX512B
W

Compare packed bytes in ymm3/m256 and
ymm2 for equality and set vector mask k1 to
reflect the zero/nonzero status of each
element of the result, under writemask.

EVEX.NDS.512.66.0F.WIG 74 /rVPCMPEQB k1 {k2}, zmm2, zmm3 /m512

FVM

V/V

AVX512BW

Compare packed bytes in zmm3/m512 and zmm2 for equality and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask.

EVEX.NDS.128.66.0F.WIG 75 /rVPCMPEQW k1 {k2}, xmm2, xmm3 /m128

FVM

V/V

AVX512VL
AVX512BW

Compare packed words in xmm3/m128 and xmm2 for equality and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask.

EVEX.NDS.256.66.0F.WIG 75 /rVPCMPEQW k1 {k2}, ymm2, ymm3 /m256

FVM

V/V

AVX512VL
AVX512BW

Compare packed words in ymm3/m256 and ymm2 for equality and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask.

EVEX.NDS.512.66.0F.WIG 75 /rVPCMPEQW k1 {k2}, zmm2, zmm3 /m512

FVM

V/V

AVX512BW

Compare packed words in zmm3/m512 and zmm2 for equality and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask.

  1. See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FV

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

FVM

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in the destination operand (first operand) and the source operand (second operand). If a pair of data elements is equal, the corresponding data element in the destination operand is set to all 1s; otherwise, it is set to all 0s.

The (V)PCMPEQB instruction compares the corresponding bytes in the destination and source operands; the (V)PCMPEQW instruction compares the corresponding words in the destination and source operands; and the (V)PCMPEQD instruction compares the corresponding doublewords in the destination and source operands.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand can be an MMX technology register.

128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The first source and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The first source and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register.

EVEX encoded VPCMPEQD: The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand (first operand) is a mask register updated according to the writemask k2.

EVEX encoded VPCMPEQB/W: The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand (first operand) is a mask register updated according to the writemask k2.

Operation

PCMPEQB (with 64-bit operands)

    IF DEST[7:0] = SRC[7:0]
          THEN DEST[7:0) <- FFH; 
          ELSE DEST[7:0] <- 0; FI;
    (* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
    IF DEST[63:56] = SRC[63:56]
          THEN DEST[63:56] <- FFH;
          ELSE DEST[63:56] <- 0; FI;

COMPARE_BYTES_EQUAL (SRC1, SRC2)

    IF SRC1[7:0] = SRC2[7:0]
    THEN DEST[7:0] <- FFH;
    ELSE DEST[7:0] <- 0; FI;
(* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *)
    IF SRC1[127:120] = SRC2[127:120]
    THEN DEST[127:120] <- FFH;
    ELSE DEST[127:120] <- 0; FI;

COMPARE_WORDS_EQUAL (SRC1, SRC2)

    IF SRC1[15:0] = SRC2[15:0]
    THEN DEST[15:0] <- FFFFH;
    ELSE DEST[15:0] <- 0; FI;
(* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *)
    IF SRC1[127:112] = SRC2[127:112]
    THEN DEST[127:112] <- FFFFH;
    ELSE DEST[127:112] <- 0; FI;

COMPARE_DWORDS_EQUAL (SRC1, SRC2)

    IF SRC1[31:0] = SRC2[31:0]
    THEN DEST[31:0] <- FFFFFFFFH;
    ELSE DEST[31:0] <- 0; FI;
(* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *)
    IF SRC1[127:96] = SRC2[127:96]
    THEN DEST[127:96] <- FFFFFFFFH;
    ELSE DEST[127:96] <- 0; FI;

PCMPEQB (with 128-bit operands)

DEST[127:0] <- COMPARE_BYTES_EQUAL(DEST[127:0],SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)

VPCMPEQB (VEX.128 encoded version)

DEST[127:0] <- COMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[VLMAX-1:128] <-  0

VPCMPEQB (VEX.256 encoded version)

DEST[127:0] <- COMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] <- COMPARE_BYTES_EQUAL(SRC1[255:128],SRC2[255:128])
DEST[VLMAX-1:256] <-  0

VPCMPEQB (EVEX encoded versions)

(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j <-  0 TO KL-1
    i <-  j * 8
    IF k2[j] OR *no writemask*
          THEN 
                /* signed comparison */
                CMP <-  SRC1[i+7:i] == SRC2[i+7:i];
                IF CMP = TRUE
                      THEN DEST[j] <-  1;
                      ELSE DEST[j] <-  0; FI;
          ELSE  DEST[j] <-  0 ; zeroing-masking onlyFI;
    FI;
ENDFOR
DEST[MAX_KL-1:KL] <-  0

PCMPEQW (with 64-bit operands)

    IF DEST[15:0] = SRC[15:0] THEN DEST[15:0] <- FFFFH;
          ELSE DEST[15:0] <- 0; FI;
    (* Continue comparison of 2nd and 3rd words in DEST and SRC *)
    IF DEST[63:48] = SRC[63:48]
          THEN DEST[63:48] <- FFFFH;
          ELSE DEST[63:48] <- 0; FI;

PCMPEQW (with 128-bit operands)

DEST[127:0] <- COMPARE_WORDS_EQUAL(DEST[127:0],SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)

VPCMPEQW (VEX.128 encoded version)

DEST[127:0] <- COMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[VLMAX-1:128] <-  0

VPCMPEQW (VEX.256 encoded version)

DEST[127:0] <- COMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] <- COMPARE_WORDS_EQUAL(SRC1[255:128],SRC2[255:128])
DEST[VLMAX-1:256] <-  0

VPCMPEQW (EVEX encoded versions)

(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j <-  0 TO KL-1
    i <-  j * 16
    IF k2[j] OR *no writemask*
          THEN 
                /* signed comparison */
                CMP <-  SRC1[i+15:i] == SRC2[i+15:i];
                IF CMP = TRUE
THEN DEST[j] <-  1;
                      ELSE DEST[j] <-  0; FI;
          ELSE  DEST[j] <-  0 ; zeroing-masking onlyFI;
    FI;
ENDFOR
DEST[MAX_KL-1:KL] <-  0

PCMPEQD (with 64-bit operands)

    IF DEST[31:0] = SRC[31:0]
          THEN DEST[31:0] <- FFFFFFFFH; 
          ELSE DEST[31:0] <- 0; FI;
    IF DEST[63:32] = SRC[63:32]
          THEN DEST[63:32] <- FFFFFFFFH;
          ELSE DEST[63:32] <- 0; FI;

PCMPEQD (with 128-bit operands)

DEST[127:0] <- COMPARE_DWORDS_EQUAL(DEST[127:0],SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)

VPCMPEQD (VEX.128 encoded version)

DEST[127:0] <- COMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[VLMAX-1:128] <-  0

VPCMPEQD (VEX.256 encoded version)

DEST[127:0] <- COMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] <- COMPARE_DWORDS_EQUAL(SRC1[255:128],SRC2[255:128])
DEST[VLMAX-1:256] <-  0

VPCMPEQD (EVEX encoded versions)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k2[j] OR *no writemask*
          THEN 
                /* signed comparison */
                IF (EVEX.b = 1) AND (SRC2 *is memory*)
                      THEN CMP <-  SRC1[i+31:i] = SRC2[31:0];
                      ELSE CMP <-  SRC1[i+31:i] = SRC2[i+31:i];
                FI;
                IF CMP = TRUE
                      THEN DEST[j] <-  1;
                      ELSE DEST[j] <-  0; FI;
          ELSE  DEST[j] <-  0 ; zeroing-masking only
    FI;
ENDFOR
DEST[MAX_KL-1:KL] <-  0

Intel C/C++ Compiler Intrinsic Equivalents

VPCMPEQB __mmask64 _mm512_cmpeq_epi8_mask(__m512i a, __m512i b);
VPCMPEQB __mmask64 _mm512_mask_cmpeq_epi8_mask(__mmask64 k, __m512i a,
                                               __m512i b);
VPCMPEQB __mmask32 _mm256_cmpeq_epi8_mask(__m256i a, __m256i b);
VPCMPEQB __mmask32 _mm256_mask_cmpeq_epi8_mask(__mmask32 k, __m256i a,
                                               __m256i b);
VPCMPEQB __mmask16 _mm_cmpeq_epi8_mask(__m128i a, __m128i b);
VPCMPEQB __mmask16 _mm_mask_cmpeq_epi8_mask(__mmask16 k, __m128i a, __m128i b);
VPCMPEQW __mmask32 _mm512_cmpeq_epi16_mask(__m512i a, __m512i b);
VPCMPEQW __mmask32 _mm512_mask_cmpeq_epi16_mask(__mmask32 k, __m512i a,
                                                __m512i b);
VPCMPEQW __mmask16 _mm256_cmpeq_epi16_mask(__m256i a, __m256i b);
VPCMPEQW __mmask16 _mm256_mask_cmpeq_epi16_mask(__mmask16 k, __m256i a,
                                                __m256i b);
VPCMPEQW __mmask8 _mm_cmpeq_epi16_mask(__m128i a, __m128i b);
VPCMPEQW __mmask8 _mm_mask_cmpeq_epi16_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPEQD __mmask16 _mm512_cmpeq_epi32_mask(__m512i a, __m512i b);
VPCMPEQD __mmask16 _mm512_mask_cmpeq_epi32_mask(__mmask16 k, __m512i a,
                                                __m512i b);
VPCMPEQD __mmask8 _mm256_cmpeq_epi32_mask(__m256i a, __m256i b);
VPCMPEQD __mmask8 _mm256_mask_cmpeq_epi32_mask(__mmask8 k, __m256i a,
                                               __m256i b);
VPCMPEQD __mmask8 _mm_cmpeq_epi32_mask(__m128i a, __m128i b);
VPCMPEQD __mmask8 _mm_mask_cmpeq_epi32_mask(__mmask8 k, __m128i a, __m128i b);
PCMPEQB : __m64 _mm_cmpeq_pi8(__m64 m1, __m64 m2) PCMPEQW
    : __m64 _mm_cmpeq_pi16(__m64 m1, __m64 m2) PCMPEQD
    : __m64 _mm_cmpeq_pi32(__m64 m1, __m64 m2)(V) PCMPEQB
    : __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)(V) PCMPEQW
    : __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)(V) PCMPEQD
    : __m128i _mm_cmpeq_epi32(__m128i a, __m128i b) VPCMPEQB
    : __m256i _mm256_cmpeq_epi8(__m256i a, __m256i b) VPCMPEQW
    : __m256i _mm256_cmpeq_epi16(__m256i a, __m256i b) VPCMPEQD
    : __m256i _mm256_cmpeq_epi32(__m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded VPCMPEQD, see Exceptions Type E4.

EVEX-encoded VPCMPEQB/W, see Exceptions Type E4.nb.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..