모두의 코드
PHADDW, PHADDDs (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 746 번 읽혔습니다.

PHADDW, PHADDD

Packed Horizontal Add

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 01 /r\footnote{1}
PHADDW mm1 mm2/m64

RM

V/V

SSSE3

Add 16-bit integers horizontally, pack to mm1.

66 0F 38 01 /r
PHADDW xmm1 xmm2/m128

RM

V/V

SSSE3

Add 16-bit integers horizontally, pack to xmm1.

0F 38 02 /r
PHADDD mm1 mm2/m64

RM

V/V

SSSE3

Add 32-bit integers horizontally, pack to mm1.

66 0F 38 02 /r
PHADDD xmm1 xmm2/m128

RM

V/V

SSSE3

Add 32-bit integers horizontally, pack to xmm1.

VEX.NDS.128.66.0F38.WIG 01 /r
VPHADDW xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Add 16-bit integers horizontally, pack to xmm1.

VEX.NDS.128.66.0F38.WIG 02 /r
VPHADDD xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Add 32-bit integers horizontally, pack to xmm1.

VEX.NDS.256.66.0F38.WIG 01 /r
VPHADDW ymm1 ymm2 ymm3/m256

RVM

V/V

AVX2

Add 16-bit signed integers horizontally, pack to ymm1.

VEX.NDS.256.66.0F38.WIG 02 /r
VPHADDD ymm1 ymm2 ymm3/m256

RVM

V/V

AVX2

Add 32-bit signed integers horizontally, pack to ymm1.

  1. See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

Description

(V)PHADDW adds two adjacent 16-bit signed integers horizontally from the source and destination operands and packs the 16-bit signed results to the destination operand (first operand). (V)PHADDD adds two adjacent 32-bit signed integers horizontally from the source and destination operands and packs the 32-bit signed results to the destination operand (first operand). When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.

Note that these instructions can operate on either unsigned or signed (two's complement notation) integers; however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected over-flow conditions, software must control the ranges of the values operated on.

Legacy SSE instructions: Both operands can be MMX registers. The second source operand can be an MMX register or a 64-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.

In 64-bit mode, use the REX prefix to access additional registers.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: Horizontal addition of two adjacent data elements of the low 16-bytes of the first and second source operands are packed into the low 16-bytes of the destination operand. Horizontal addition of two adjacent data elements of the high 16-bytes of the first and second source operands are packed into the high 16-bytes of the destination operand. The first source and destination operands are YMM registers. The second source operand can be an YMM register or a 256-bit memory location.

Note: VEX.L must be 0, otherwise the instruction will #UD.

3 S 1 S S t s S C 5 Y 6 Y Y 4 5 6 X 7 X X 1 2 Y Y X 2 X X X 4 S D R 1 C S 0 Y Y 7 2 2 1 3 S 0 S R 0 S 5 3 Y 4 0 e 3 X S 2 7 5 3
Figure 4-10. 256-bit VPHADDD Instruction Operation

Operation

PHADDW (with 64-bit operands)

mm1[15-0] = mm1[31-16] + mm1[15-0];

mm1[31-16] = mm1[63-48] + mm1[47-32];

mm1[47-32] = mm2/m64[31-16] + mm2/m64[15-0];

mm1[63-48] = mm2/m64[63-48] + mm2/m64[47-32];

PHADDW (with 128-bit operands)

xmm1[15-0] = xmm1[31-16] + xmm1[15-0];

xmm1[31-16] = xmm1[63-48] + xmm1[47-32];

xmm1[47-32] = xmm1[95-80] + xmm1[79-64];

xmm1[63-48] = xmm1[127-112] + xmm1[111-96];

xmm1[79-64] = xmm2/m128[31-16] + xmm2/m128[15-0];

xmm1[95-80] = xmm2/m128[63-48] + xmm2/m128[47-32];

xmm1[111-96] = xmm2/m128[95-80] + xmm2/m128[79-64];

xmm1[127-112] = xmm2/m128[127-112] + xmm2/m128[111-96];

VPHADDW (VEX.128 encoded version)

DEST[15:0] <- SRC1[31:16] + SRC1[15:0]

DEST[31:16] <- SRC1[63:48] + SRC1[47:32]

DEST[47:32] <- SRC1[95:80] + SRC1[79:64]

DEST[63:48] <- SRC1[127:112] + SRC1[111:96]

DEST[79:64] <- SRC2[31:16] + SRC2[15:0]

DEST[95:80] <- SRC2[63:48] + SRC2[47:32]

DEST[111:96] <- SRC2[95:80] + SRC2[79:64]

DEST[127:112] <- SRC2[127:112] + SRC2[111:96]

DEST[VLMAX-1:128] <- 0

VPHADDW (VEX.256 encoded version)

DEST[15:0] <- SRC1[31:16] + SRC1[15:0]

DEST[31:16] <- SRC1[63:48] + SRC1[47:32]

DEST[47:32] <- SRC1[95:80] + SRC1[79:64]

DEST[63:48] <- SRC1[127:112] + SRC1[111:96]

DEST[79:64] <- SRC2[31:16] + SRC2[15:0]

DEST[95:80] <- SRC2[63:48] + SRC2[47:32]

DEST[111:96] <- SRC2[95:80] + SRC2[79:64]

DEST[127:112] <- SRC2[127:112] + SRC2[111:96]

DEST[143:128] <- SRC1[159:144] + SRC1[143:128]

DEST[159:144] <- SRC1[191:176] + SRC1[175:160]

DEST[175:160] <- SRC1[223:208] + SRC1[207:192]

DEST[191:176] <- SRC1[255:240] + SRC1[239:224]

DEST[207:192] <- SRC2[127:112] + SRC2[143:128]

DEST[223:208] <- SRC2[159:144] + SRC2[175:160]

DEST[239:224] <- SRC2[191:176] + SRC2[207:192]

DEST[255:240] <- SRC2[223:208] + SRC2[239:224]

PHADDD (with 64-bit operands)

mm1[31-0] = mm1[63-32] + mm1[31-0];

mm1[63-32] = mm2/m64[63-32] + mm2/m64[31-0];

PHADDD (with 128-bit operands)

xmm1[31-0] = xmm1[63-32] + xmm1[31-0];

xmm1[63-32] = xmm1[127-96] + xmm1[95-64];

xmm1[95-64] = xmm2/m128[63-32] + xmm2/m128[31-0];

xmm1[127-96] = xmm2/m128[127-96] + xmm2/m128[95-64];

VPHADDD (VEX.128 encoded version)

DEST[31-0] <- SRC1[63-32] + SRC1[31-0]

DEST[63-32] <- SRC1[127-96] + SRC1[95-64]

DEST[95-64] <- SRC2[63-32] + SRC2[31-0]

DEST[127-96] <- SRC2[127-96] + SRC2[95-64]

DEST[VLMAX-1:128] <- 0

VPHADDD (VEX.256 encoded version)

DEST[31-0] <- SRC1[63-32] + SRC1[31-0]

DEST[63-32] <- SRC1[127-96] + SRC1[95-64]

DEST[95-64] <- SRC2[63-32] + SRC2[31-0]

DEST[127-96] <- SRC2[127-96] + SRC2[95-64]

DEST[159-128] <- SRC1[191-160] + SRC1[159-128]

DEST[191-160] <- SRC1[255-224] + SRC1[223-192]

DEST[223-192] <- SRC2[191-160] + SRC2[159-128]

DEST[255-224] <- SRC2[255-224] + SRC2[223-192]

Intel C/C++ Compiler Intrinsic Equivalents

PHADDW : __m64 _mm_hadd_pi16(__m64 a, __m64 b) PHADDD
    : __m64 _mm_hadd_pi32(__m64 a, __m64 b)(V) PHADDW
    : __m128i _mm_hadd_epi16(__m128i a, __m128i b)(V) PHADDD
    : __m128i _mm_hadd_epi32(__m128i a, __m128i b) VPHADDW
    : __m256i _mm256_hadd_epi16(__m256i a, __m256i b) VPHADDD
    : __m256i _mm256_hadd_epi32(__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally

#UD If VEX.L = 1.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..