모두의 코드
VBROADCAST (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 1064 번 읽혔습니다.

VBROADCAST

Load with Broadcast Floating-Point Data

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.128.66.0F38.W0 18 /r
VBROADCASTSS xmm1 m32

RM

V/V

AVX

Broadcast single-precision floating-point element in mem to four locations in xmm1.

VEX.256.66.0F38.W0 18 /r
VBROADCASTSS ymm1 m32

RM

V/V

AVX

Broadcast single-precision floating-point element in mem to eight locations in ymm1.

VEX.256.66.0F38.W0 19 /r
VBROADCASTSD ymm1 m64

RM

V/V

AVX

Broadcast double-precision floating-point element in mem to four locations in ymm1.

VEX.256.66.0F38.W0 1A /r
VBROADCASTF128 ymm1 m128

RM

V/V

AVX

Broadcast 128 bits of floating-point data in mem to low and high 128-bits in ymm1.

EVEX.256.66.0F38.W1 19 /r
VBROADCASTSD ymm1 {k1}{z} xmm2/m64

T1S

V/V

AVX512VL
AVX512F

Broadcast low double-precision floating-point element in xmm2/m64 to four locations in ymm1 using writemask k1.

EVEX.512.66.0F38.W1 19 /r
VBROADCASTSD zmm1 {k1}{z} xmm2/m64

T1S

V/V

AVX512F

Broadcast low double-precision floating-point element in xmm2/m64 to eight locations in zmm1 using writemask k1.

EVEX.256.66.0F38.W0 19 /r
VBROADCASTF32X2 ymm1 {k1}{z} xmm2/m64

T2

V/V

AVX512VL
AVX512DQ

Broadcast two single-precision floating-point elements in xmm2/m64 to locations in ymm1 using writemask k1.

EVEX.512.66.0F38.W0 19 /r
VBROADCASTF32X2 zmm1 {k1}{z} xmm2/m64

T2

V/V

AVX512DQ

Broadcast two single-precision floating-point elements in xmm2/m64 to locations in zmm1 using writemask k1.

EVEX.128.66.0F38.W0 18 /r
VBROADCASTSS xmm1 {k1}{z} xmm2/m32

T1S

V/V

AVX512VL
AVX512F

Broadcast low single-precision floating-point element in xmm2/m32 to all locations in xmm1 using writemask k1.

EVEX.256.66.0F38.W0 18 /r
VBROADCASTSS ymm1 {k1}{z} xmm2/m32

T1S

V/V

AVX512VL
AVX512F

Broadcast low single-precision floating-point element in xmm2/m32 to all locations in ymm1 using writemask k1.

EVEX.512.66.0F38.W0 18 /r
VBROADCASTSS zmm1 {k1}{z} xmm2/m32

T1S

V/V

AVX512F

Broadcast low single-precision floating-point element in xmm2/m32 to all locations in zmm1 using writemask k1.

EVEX.256.66.0F38.W0 1A /r
VBROADCASTF32X4 ymm1 {k1}{z} m128

T4

V/V

AVX512VL
AVX512F

Broadcast 128 bits of 4 single-precision floating-point data in mem to locations in ymm1 using writemask k1.

EVEX.512.66.0F38.W0 1A /r
VBROADCASTF32X4 zmm1 {k1}{z} m128

T4

V/V

AVX512F

Broadcast 128 bits of 4 single-precision floating-point data in mem to locations in zmm1 using writemask k1.

EVEX.256.66.0F38.W1 1A /r
VBROADCASTF64X2 ymm1 {k1}{z} m128

T2

V/V

AVX512VL
AVX512DQ

Broadcast 128 bits of 2 double-precision floating-point data in mem to locations in ymm1 using writemask k1.

EVEX.512.66.0F38.W1 1A /r
VBROADCASTF64X2 zmm1 {k1}{z} m128

T2

V/V

AVX512DQ

Broadcast 128 bits of 2 double-precision floating-point data in mem to locations in zmm1 using writemask k1.

EVEX.512.66.0F38.W0 1B /r
VBROADCASTF32X8 zmm1 {k1}{z} m256

T8

V/V

AVX512DQ

Broadcast 256 bits of 8 single-precision floating-point data in mem to locations in zmm1 using writemask k1.

EVEX.512.66.0F38.W1 1B /r
VBROADCASTF64X4 zmm1 {k1}{z} m256

T4

V/V

AVX512F

Broadcast 256 bits of 4 double-precision floating-point data in mem to locations in zmm1 using writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

T1S, T2, T4, T8

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

Description

VBROADCASTSD/VBROADCASTSS/VBROADCASTF128 load floating-point values as one tuple from the source operand (second operand) in memory and broadcast to all elements of the destination operand (first operand).

VEX256-encoded versions: The destination operand is a YMM register. The source operand is either a 32-bit,64-bit, or 128-bit memory location. Register source encodings are reserved and will #UD. Bits (MAXVL-1:256) of the destination register are zeroed.

EVEX-encoded versions: The destination operand is a ZMM/YMM/XMM register and updated according to thewritemask k1. The source operand is either a 32-bit, 64-bit memory location or the lowdoubleword/quadword element of an XMM register.

VBROADCASTF32X2/VBROADCASTF32X4/VBROADCASTF64X2/VBROADCASTF32X8/VBROADCASTF64X4 load floating-point values as tuples from the source operand (the second operand) in memory or register and broadcast to all elements of the destination operand (the first operand). The destination operand is a YMM/ZMM register updated according to the writemask k1. The source operand is either a register or 64-bit/128-bit/256-bit memory location.

VBROADCASTSD and VBROADCASTF128,F32x4 and F64x2 are only supported as 256-bit and 512-bit wide versions and up. VBROADCASTSS is supported in 128-bit, 256-bit and 512-bit wide versions. F32x8 and F64x4 are only supported as 512-bit wide versions.

VBROADCASTF32X2/VBROADCASTF32X4/VBROADCASTF32X8 have 32-bit granularity. VBROADCASTF64X2 and VBROADCASTF64X4 have 64-bit granularity.

Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

If VBROADCASTSD or VBROADCASTF128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an #UD exception.

0 X 0 0 X 0 X X 0 m T 0 X 2 X D S E X 0 0 X 0 3 X
Figure 5-1. VBROADCASTSS Operation (VEX.256 encoded version)

0 0 0 3 m T D 0 0 X S 2 E 0 0 X X X 0 0 X
Figure 5-2. VBROADCASTSS Operation (VEX.128-bit version)

0 X X X X 4 m T D E S 0 0 6 0 X 0
Figure 5-3. VBROADCASTSD Operation (VEX.256-bit version)

0 X 0 2 1 T S m 0 E D X X 8
Figure 5-4. VBROADCASTF128 Operation (VEX.256-bit version)

X 0 2 E D m 0 0 6 S X T 5 X
Figure 5-5. VBROADCASTF64X4 Operation (512-bit version with writemask all 1s)

Operation

VBROADCASTSS (128 bit version VEX and legacy)

temp <-  SRC[31:0]
DEST[31:0] <-  temp
DEST[63:32] <-  temp
DEST[95:64] <-  temp
DEST[127:96] <-  temp
DEST[MAX_VL-1:128] <-  0

VBROADCASTSS (VEX.256 encoded version)

temp <-  SRC[31:0]
DEST[31:0] <-  temp
DEST[63:32] <-  temp
DEST[95:64] <-  temp
DEST[127:96] <-  temp
DEST[159:128] <-  temp
DEST[191:160] <-  temp
DEST[223:192] <-  temp
DEST[255:224] <-  temp
DEST[MAX_VL-1:256] <-  0

VBROADCASTSS (EVEX encoded versions)

(KL, VL) (4, 128), (8, 256),= (16, 512)
FOR j <-  0 TO KL-1
    i <- j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  SRC[31:0]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VBROADCASTSD (VEX.256 encoded version)

temp <-  SRC[63:0]
DEST[63:0] <-  temp
DEST[127:64] <-  temp
DEST[191:128] <-  temp
DEST[255:192] <-  temp
DEST[MAX_VL-1:256] <-  0

VBROADCASTSD (EVEX encoded versions)

(KL, VL) = (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <- j * 64
    IF k1[j] OR *no writemask*
          THEN DEST[i+63:i] <-  SRC[63:0]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VBROADCASTF32x2 (EVEX encoded versions)

(KL, VL) = (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-!= j * 32
    n <-!= (j mod 2) * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  SRC[n+31:n]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VBROADCASTF128 (VEX.256 encoded version)

temp <-  SRC[127:0]
DEST[127:0] <-  temp
DEST[255:128] <-  temp
DEST[MAX_VL-1:256] <-  0

VBROADCASTF32X4 (EVEX encoded versions)

(KL, VL) = (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-!= j* 32
    n <-!= (j modulo 4) * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  SRC[n+31:n]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VBROADCASTF64X2 (EVEX encoded versions)

(KL, VL) = (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    n <- (j modulo 2) * 64
    IF k1[j] OR *no writemask*
          THEN DEST[i+63:i] <-  SRC[n+63:n]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] = 0
                FI
    FI;
ENDFOR;

VBROADCASTF32X8 (EVEX.U1.512 encoded version)

FOR j <-  0 TO 15
    i <-  j * 32
    n <- (j modulo 8) * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  SRC[n+31:n]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VBROADCASTF64X4 (EVEX.512 encoded version)

FOR j <-  0 TO 7
    i <-  j * 64
    n <-!= (j modulo 4) * 64
    IF k1[j] OR *no writemask*
          THEN DEST[i+63:i] <-  SRC[n+63:n]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalent

VBROADCASTF32x2 __m512 _mm512_broadcast_f32x2(__m128 a);
VBROADCASTF32x2 __m512 _mm512_mask_broadcast_f32x2(__m512 s, __mmask16 k,
                                                   __m128 a);
VBROADCASTF32x2 __m512 _mm512_maskz_broadcast_f32x2(__mmask16 k, __m128 a);
VBROADCASTF32x2 __m256 _mm256_broadcast_f32x2(__m128 a);
VBROADCASTF32x2 __m256 _mm256_mask_broadcast_f32x2(__m256 s, __mmask8 k,
                                                   __m128 a);
VBROADCASTF32x2 __m256 _mm256_maskz_broadcast_f32x2(__mmask8 k, __m128 a);
VBROADCASTF32x4 __m512 _mm512_broadcast_f32x4(__m128 a);
VBROADCASTF32x4 __m512 _mm512_mask_broadcast_f32x4(__m512 s, __mmask16 k,
                                                   __m128 a);
VBROADCASTF32x4 __m512 _mm512_maskz_broadcast_f32x4(__mmask16 k, __m128 a);
VBROADCASTF32x4 __m256 _mm256_broadcast_f32x4(__m128 a);
VBROADCASTF32x4 __m256 _mm256_mask_broadcast_f32x4(__m256 s, __mmask8 k,
                                                   __m128 a);
VBROADCASTF32x4 __m256 _mm256_maskz_broadcast_f32x4(__mmask8 k, __m128 a);
VBROADCASTF32x8 __m512 _mm512_broadcast_f32x8(__m256 a);
VBROADCASTF32x8 __m512 _mm512_mask_broadcast_f32x8(__m512 s, __mmask16 k,
                                                   __m256 a);
VBROADCASTF32x8 __m512 _mm512_maskz_broadcast_f32x8(__mmask16 k, __m256 a);
VBROADCASTF64x2 __m512d _mm512_broadcast_f64x2(__m128d a);
VBROADCASTF64x2 __m512d _mm512_mask_broadcast_f64x2(__m512d s, __mmask8 k,
                                                    __m128d a);
VBROADCASTF64x2 __m512d _mm512_maskz_broadcast_f64x2(__mmask8 k, __m128d a);
VBROADCASTF64x2 __m256d _mm256_broadcast_f64x2(__m128d a);
VBROADCASTF64x2 __m256d _mm256_mask_broadcast_f64x2(__m256d s, __mmask8 k,
                                                    __m128d a);
VBROADCASTF64x2 __m256d _mm256_maskz_broadcast_f64x2(__mmask8 k, __m128d a);
VBROADCASTF64x4 __m512d _mm512_broadcast_f64x4(__m256d a);
VBROADCASTF64x4 __m512d _mm512_mask_broadcast_f64x4(__m512d s, __mmask8 k,
                                                    __m256d a);
VBROADCASTF64x4 __m512d _mm512_maskz_broadcast_f64x4(__mmask8 k, __m256d a);
VBROADCASTSD __m512d _mm512_broadcastsd_pd(__m128d a);
VBROADCASTSD __m512d _mm512_mask_broadcastsd_pd(__m512d s, __mmask8 k,
                                                __m128d a);
VBROADCASTSD __m512d _mm512_maskz_broadcastsd_pd(__mmask8 k, __m128d a);
VBROADCASTSD __m256d _mm256_broadcastsd_pd(__m128d a);
VBROADCASTSD __m256d _mm256_mask_broadcastsd_pd(__m256d s, __mmask8 k,
                                                __m128d a);
VBROADCASTSD __m256d _mm256_maskz_broadcastsd_pd(__mmask8 k, __m128d a);
VBROADCASTSD __m256d _mm256_broadcast_sd(double *a);
VBROADCASTSS __m512 _mm512_broadcastss_ps(__m128 a);
VBROADCASTSS __m512 _mm512_mask_broadcastss_ps(__m512 s, __mmask16 k, __m128 a);
VBROADCASTSS __m512 _mm512_maskz_broadcastss_ps(__mmask16 k, __m128 a);
VBROADCASTSS __m256 _mm256_broadcastss_ps(__m128 a);
VBROADCASTSS __m256 _mm256_mask_broadcast_ss(__m256 s, __mmask8 k, __m128 a);
VBROADCASTSS __m256 _mm256_maskz_broadcast_ss(__mmask8 k, __m128 a);
VBROADCASTSS __m128 _mm_broadcastss_ps(__m128 a);
VBROADCASTSS __m128 _mm_mask_broadcast_ss(__m128 s, __mmask8 k, __m128 a);
VBROADCASTSS __m128 _mm_maskz_broadcast_ss(__mmask8 k, __m128 a);
VBROADCASTSS __m128 _mm_broadcast_ss(float *a);
VBROADCASTSS __m256 _mm256_broadcast_ss(float *a);
VBROADCASTF128 __m256 _mm256_broadcast_ps(__m128 *a);
VBROADCASTF128 __m256d _mm256_broadcast_pd(__m128d *a);

Exceptions

VEX-encoded instructions, see Exceptions Type 6;

EVEX-encoded instructions, see Exceptions Type E6.

#UD If VEX.L = 0 for VBROADCASTSD or VBROADCASTF128.

If EVEX.L'L = 0 for VBROADCASTSD/VBROADCASTF32X2/VBROADCASTF32X4/VBROADCASTF64X2.

If EVEX.L'L < 10b for VBROADCASTF32X8/VBROADCASTF64X4.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..