모두의 코드
VCVTPH2PS (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 549 번 읽혔습니다.

VCVTPH2PS

Convert 16-bit FP values to Single-Precision FP values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

VEX.128.66.0F38.W0 13 /r
VCVTPH2PS xmm1 xmm2/m64

RM

V/V

F16C

Convert four packed half precision (16-bit) floating-point values in xmm2/m64 to packed single-precision floating-point value in xmm1.

VEX.256.66.0F38.W0 13 /r
VCVTPH2PS ymm1 xmm2/m128

RM

V/V

F16C

Convert eight packed half precision (16-bit) floating-point values in xmm2/m128 to packed single-precision floating-point value in ymm1.

EVEX.128.66.0F38.W0 13 /r
VCVTPH2PS xmm1 {k1}{z} xmm2/m64

HVM

V/V

AVX512VL
AVX512F

Convert four packed half precision (16-bit) floating-point values in xmm2/m64 to packed single-precision floating-point values in xmm1.

EVEX.256.66.0F38.W0 13 /r
VCVTPH2PS ymm1 {k1}{z} xmm2/m128

HVM

V/V

AVX512VL
AVX512F

Convert eight packed half precision (16-bit) floating-point values in xmm2/m128 to packed single-precision floating-point values in ymm1.

EVEX.512.66.0F38.W0 13 /r
VCVTPH2PS zmm1 {k1}{z} ymm2/m256 {sae}

HVM

V/V

AVX512F

Convert sixteen packed half precision (16-bit) floating-point values in ymm2/m256 to packed single-precision floating-point values in zmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

HVM ModRM:reg (w) ModRM:r/m (r) NA NA

Description

Converts packed half precision (16-bits) floating-point values in the low-order bits of the source operand (the second operand) to packed single-precision floating-point values and writes the converted values into the destina-tion operand (the first operand).

If case of a denormal operand, the correct normal result is returned. MXCSR.DAZ is ignored and is treated as if it 0. No denormal exception is reported on MXCSR.

VEX.128 version: The source operand is a XMM register or 64-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding destination register are zeroed.

VEX.256 version: The source operand is a XMM register or 128-bit memory location. The destination operand is a YMM register. Bits (MAXVL-1:256) of the corresponding destination register are zeroed.

EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64-bits) register or a 256/128/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.

The diagram below illustrates how data is converted from four packed half precision (in 64 bits) to four single preci-sion (in 128 bits) FP values.

Note: VEX.vvvv and EVEX.vvvv are reserved (must be 1111b).

m i , 6 m e m / 2 m x , m m x 2 H P V C 1 m x 6 m / 2 m x t r n o c e v n o t r c t e n o c 6 2 1 4 6 5 9 2 3 8 m 6 0 1 1 m T v e n 4 3 9 V r 5 3 7 m V 4 S S V H t 3 V 3 v 8 e H e 0 1 m 0 m 5 V 4 1 o v 3 r V 2 3 H V P H S V 1 c S 1 6 4 7 2 3 2 6 4 9 6 1 2 7 9 6 S 0 V 1
Figure 5-6. VCVTPH2PS (128-bit Version)

Operation

VCVTPH2PS (EVEX encoded versions)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    k <-  j * 16
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-
                vCvt_h2s(SRC[k+15:k])
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VCVTPH2PS (VEX.256 encoded version)

DEST[31:0] <- vCvt_h2s(SRC1[15:0]);
DEST[63:32] <- vCvt_h2s(SRC1[31:16]);
DEST[95:64] <- vCvt_h2s(SRC1[47:32]);
DEST[127:96] <- vCvt_h2s(SRC1[63:48]);
DEST[159:128] <- vCvt_h2s(SRC1[79:64]);
DEST[191:160] <- vCvt_h2s(SRC1[95:80]);
DEST[223:192] <- vCvt_h2s(SRC1[111:96]);
DEST[255:224] <- vCvt_h2s(SRC1[127:112]);
DEST[MAX_VL-1:256] <-  0

VCVTPH2PS (VEX.128 encoded version)

DEST[31:0] <- vCvt_h2s(SRC1[15:0]);
DEST[63:32] <- vCvt_h2s(SRC1[31:16]);
DEST[95:64] <- vCvt_h2s(SRC1[47:32]);
DEST[127:96] <- vCvt_h2s(SRC1[63:48]);
DEST[MAX_VL-1:128] <-  0

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPH2PS __m512 _mm512_cvtph_ps(__m256i a);
VCVTPH2PS __m512 _mm512_mask_cvtph_ps(__m512 s, __mmask16 k, __m256i a);
VCVTPH2PS __m512 _mm512_maskz_cvtph_ps(__mmask16 k, __m256i a);
VCVTPH2PS __m512 _mm512_cvt_roundph_ps(__m256i a, int sae);
VCVTPH2PS __m512 _mm512_mask_cvt_roundph_ps(__m512 s, __mmask16 k, __m256i a,
                                            int sae);
VCVTPH2PS __m512 _mm512_maskz_cvt_roundph_ps(__mmask16 k, __m256i a, int sae);
VCVTPH2PS __m256 _mm256_mask_cvtph_ps(__m256 s, __mmask8 k, __m128i a);
VCVTPH2PS __m256 _mm256_maskz_cvtph_ps(__mmask8 k, __m128i a);
VCVTPH2PS __m128 _mm_mask_cvtph_ps(__m128 s, __mmask8 k, __m128i a);
VCVTPH2PS __m128 _mm_maskz_cvtph_ps(__mmask8 k, __m128i a);
VCVTPH2PS __m128 _mm_cvtph_ps(__m128i m1);
VCVTPH2PS __m256 _mm256_cvtph_ps(__m128i m1)

SIMD Floating-Point Exceptions

Invalid

Other Exceptions

VEX-encoded instructions, see Exceptions Type 11 (do not report #AC);

EVEX-encoded instructions, see Exceptions Type E11.

#UD If VEX.W=1.

#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..