모두의 코드
VFMADDSUB132PS, VFMADDSUB213PS, VFMADDSUB231PSs (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 527 번 읽혔습니다.

VFMADDSUB132PS, VFMADDSUB213PS, VFMADDSUB231PS

Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 96 /r
VFMADDSUB132PS xmm1 xmm2 xmm3/m128

RVM

V/V

FMA

Multiply packed single-precision floating-point values from xmm1 and xmm3/mem, add/subtract elements in xmm2 and put result in xmm1.

VEX.DDS.128.66.0F38.W0 A6 /r
VFMADDSUB213PS xmm1 xmm2 xmm3/m128

RVM

V/V

FMA

Multiply packed single-precision floating-point values from xmm1 and xmm2, add/subtract elements in xmm3/mem and put result in xmm1.

VEX.DDS.128.66.0F38.W0 B6 /r
VFMADDSUB231PS xmm1 xmm2 xmm3/m128

RVM

V/V

FMA

Multiply packed single-precision floating-point values from xmm2 and xmm3/mem, add/subtract elements in xmm1 and put result in xmm1.

VEX.DDS.256.66.0F38.W0 96 /r
VFMADDSUB132PS ymm1 ymm2 ymm3/m256

RVM

V/V

FMA

Multiply packed single-precision floating-point values from ymm1 and ymm3/mem, add/subtract elements in ymm2 and put result in ymm1.

VEX.DDS.256.66.0F38.W0 A6 /r
VFMADDSUB213PS ymm1 ymm2 ymm3/m256

RVM

V/V

FMA

Multiply packed single-precision floating-point values from ymm1 and ymm2, add/subtract elements in ymm3/mem and put result in ymm1.

VEX.DDS.256.66.0F38.W0 B6 /r
VFMADDSUB231PS ymm1 ymm2 ymm3/m256

RVM

V/V

FMA

Multiply packed single-precision floating-point values from ymm2 and ymm3/mem, add/subtract elements in ymm1 and put result in ymm1.

EVEX.DDS.128.66.0F38.W0 A6 /r
VFMADDSUB213PS xmm1 {k1}{z} xmm2 xmm3/m128/m32bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed single-precision floating-point values from xmm1 and xmm2, add/subtract elements in xmm3/m128/m32bcst and put result in xmm1 subject to writemask k1.

EVEX.DDS.128.66.0F38.W0 B6 /r
VFMADDSUB231PS xmm1 {k1}{z} xmm2 xmm3/m128/m32bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed single-precision floating-point values from xmm2 and xmm3/m128/m32bcst, add/subtract elements in xmm1 and put result in xmm1 subject to writemask k1.

EVEX.DDS.128.66.0F38.W0 96 /r
VFMADDSUB132PS xmm1 {k1}{z} xmm2 xmm3/m128/m32bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed single-precision floating-point values from xmm1 and xmm3/m128/m32bcst, add/subtract elements in zmm2 and put result in xmm1 subject to writemask k1.

EVEX.DDS.256.66.0F38.W0 A6 /r
VFMADDSUB213PS ymm1 {k1}{z} ymm2 ymm3/m256/m32bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed single-precision floating-point values from ymm1 and ymm2, add/subtract elements in ymm3/m256/m32bcst and put result in ymm1 subject to writemask k1.

EVEX.DDS.256.66.0F38.W0 B6 /r
VFMADDSUB231PS ymm1 {k1}{z} ymm2 ymm3/m256/m32bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed single-precision floating-point values from ymm2 and ymm3/m256/m32bcst, add/subtract elements in ymm1 and put result in ymm1 subject to writemask k1.

EVEX.DDS.256.66.0F38.W0 96 /r
VFMADDSUB132PS ymm1 {k1}{z} ymm2 ymm3/m256/m32bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed single-precision floating-point values from ymm1 and ymm3/m256/m32bcst, add/subtract elements in ymm2 and put result in ymm1 subject to writemask k1.

EVEX.DDS.512.66.0F38.W0 A6 /r
VFMADDSUB213PS zmm1 {k1}{z} zmm2 zmm3/m512/m32bcst{er}

FV

V/V

AVX512F

Multiply packed single-precision floating-point values from zmm1 and zmm2, add/subtract elements in zmm3/m512/m32bcst and put result in zmm1 subject to writemask k1.

EVEX.DDS.512.66.0F38.W0 B6 /r
VFMADDSUB231PS zmm1 {k1}{z} zmm2 zmm3/m512/m32bcst{er}

FV

V/V

AVX512F

Multiply packed single-precision floating-point values from zmm2 and zmm3/m512/m32bcst, add/subtract elements in zmm1 and put result in zmm1 subject to writemask k1.

EVEX.DDS.512.66.0F38.W0 96 /r
VFMADDSUB132PS zmm1 {k1}{z} zmm2 zmm3/m512/m32bcst{er}

FV

V/V

AVX512F

Multiply packed single-precision floating-point values from zmm1 and zmm3/m512/m32bcst, add/subtract elements in zmm2 and put result in zmm1 subject to writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RVM

ModRM:reg (r, w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FV

ModRM:reg (r, w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

VFMADDSUB132PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the first source operand to the corresponding packed single-precision floating-point values in the third source operand. From the infinite precision intermediate result, adds the odd single-precision floating-point elements and subtracts the even single-precision floating-point values in the second source operand, performs rounding and stores the resulting packed single-precision floating-point values to the destination operand (first source operand).

VFMADDSUB213PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second source operand to the corresponding packed single-precision floating-point values in the first source operand. From the infinite precision intermediate result, adds the odd single-precision floating-point elements and subtracts the even single-precision floating-point values in the third source operand, performs rounding and stores the resulting packed single-precision floating-point values to the destination operand (first source operand).

VFMADDSUB231PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second source operand to the corresponding packed single-precision floating-point values in the third source operand. From the infinite precision intermediate result, adds the odd single-precision floating-point elements and subtracts the even single-precision floating-point values in the first source operand, performs rounding and stores the resulting packed single-precision floating-point values to the destination operand (first source operand).

EVEX encoded versions: The destination operand (also first source operand) and the second source operand are ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is condition-ally updated with write mask k1.

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in regfield. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit memory location and encoded in rmfield.

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in regfield. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit memory location and encoded in rmfield. The upper 128 bits of the YMM destination register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction column.

Operation

VFMADDSUB132PS DEST, SRC2, SRC3

IF (VEX.128) THEN 
    MAXNUM <- 2
ELSEIF (VEX.256)
    MAXNUM <-  4
FI
For i = 0 to MAXNUM -1{
    n <-  64*i;
    DEST[n+31:n] <- RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])
    DEST[n+63:n+32] <- RoundFPControl_MXCSR(DEST[n+63:n+32]*SRC3[n+63:n+32] + SRC2[n+63:n+32])
}
IF (VEX.128) THEN
    DEST[MAX_VL-1:128] <- 0
ELSEIF (VEX.256)
    DEST[MAX_VL-1:256] <-  0
FI

VFMADDSUB213PS DEST, SRC2, SRC3

IF (VEX.128) THEN 
    MAXNUM <- 2
ELSEIF (VEX.256)
    MAXNUM <-  4
FI
For i = 0 to MAXNUM -1{
    n <-  64*i;
    DEST[n+31:n] <- RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])
    DEST[n+63:n+32] <- RoundFPControl_MXCSR(SRC2[n+63:n+32]*DEST[n+63:n+32] + SRC3[n+63:n+32])
}
IF (VEX.128) THEN
    DEST[MAX_VL-1:128] <- 0
ELSEIF (VEX.256)
    DEST[MAX_VL-1:256] <-  0
FI

VFMADDSUB231PS DEST, SRC2, SRC3

IF (VEX.128) THEN 
    MAXNUM <- 2
ELSEIF (VEX.256)
    MAXNUM <-  4
FI
For i = 0 to MAXNUM -1{
    n <-  64*i;
    DEST[n+31:n] <- RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])
    DEST[n+63:n+32] <- RoundFPControl_MXCSR(SRC2[n+63:n+32]*SRC3[n+63:n+32] + DEST[n+63:n+32])
}
IF (VEX.128) THEN
    DEST[MAX_VL-1:128] <- 0
ELSEIF (VEX.256)
    DEST[MAX_VL-1:256] <-  0
FI

VFMADDSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)

(KL, VL) (4, 128), (8, 256),= (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN DEST[i+31:i] <-  
                            RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
                      ELSE DEST[i+31:i] <-  
                            RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])
                FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VFMADDSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] - SRC2[i+31:i])
                                  ELSE 
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
                            FI;
                      ELSE 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] + SRC2[i+31:i])
                                  ELSE 
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])
                            FI;
                FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VFMADDSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)

(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN DEST[i+31:i] <-  
                            RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
                      ELSE DEST[i+31:i] <-  
                            RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])
                FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VFMADDSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[31:0])
                                  ELSE 
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
                            FI;
                      ELSE 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[31:0])
                                  ELSE 
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])
                            FI;
FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VFMADDSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)

(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN DEST[i+31:i] <-  
                            RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
                      ELSE DEST[i+31:i] <-  
                            RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])
                FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VFMADDSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] - DEST[i+31:i])
                                  ELSE 
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
                            FI;
                      ELSE 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] + DEST[i+31:i])
                                  ELSE 
                                        DEST[i+31:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])
                            FI;
                FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDSUBxxxPS __m512 _mm512_fmaddsub_ps(__m512 a, __m512 b, __m512 c);
VFMADDSUBxxxPS __m512 _mm512_fmaddsub_round_ps(__m512 a, __m512 b, __m512 c,
                                               int r);
VFMADDSUBxxxPS __m512 _mm512_mask_fmaddsub_ps(__m512 a, __mmask16 k, __m512 b,
                                              __m512 c);
VFMADDSUBxxxPS __m512 _mm512_maskz_fmaddsub_ps(__mmask16 k, __m512 a, __m512 b,
                                               __m512 c);
VFMADDSUBxxxPS __m512 _mm512_mask3_fmaddsub_ps(__m512 a, __m512 b, __m512 c,
                                               __mmask16 k);
VFMADDSUBxxxPS __m512 _mm512_mask_fmaddsub_round_ps(__m512 a, __mmask16 k,
                                                    __m512 b, __m512 c, int r);
VFMADDSUBxxxPS __m512 _mm512_maskz_fmaddsub_round_ps(__mmask16 k, __m512 a,
                                                     __m512 b, __m512 c, int r);
VFMADDSUBxxxPS __m512 _mm512_mask3_fmaddsub_round_ps(__m512 a, __m512 b,
                                                     __m512 c, __mmask16 k,
                                                     int r);
VFMADDSUBxxxPS __m256 _mm256_mask_fmaddsub_ps(__m256 a, __mmask8 k, __m256 b,
                                              __m256 c);
VFMADDSUBxxxPS __m256 _mm256_maskz_fmaddsub_ps(__mmask8 k, __m256 a, __m256 b,
                                               __m256 c);
VFMADDSUBxxxPS __m256 _mm256_mask3_fmaddsub_ps(__m256 a, __m256 b, __m256 c,
                                               __mmask8 k);
VFMADDSUBxxxPS __m128 _mm_mask_fmaddsub_ps(__m128 a, __mmask8 k, __m128 b,
                                           __m128 c);
VFMADDSUBxxxPS __m128 _mm_maskz_fmaddsub_ps(__mmask8 k, __m128 a, __m128 b,
                                            __m128 c);
VFMADDSUBxxxPS __m128 _mm_mask3_fmaddsub_ps(__m128 a, __m128 b, __m128 c,
                                            __mmask8 k);
VFMADDSUBxxxPS __m128 _mm_fmaddsub_ps(__m128 a, __m128 b, __m128 c);
VFMADDSUBxxxPS __m256 _mm256_fmaddsub_ps(__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Exceptions Type 2.

EVEX-encoded instructions, see Exceptions Type E2.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..