모두의 코드
VPMOVDW, VPMOVSDW, VPMOVUSDWs (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 527 번 읽혔습니다.

VPMOVDW, VPMOVSDW, VPMOVUSDW

Down Convert DWord to Word

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.128.F3.0F38.W0 33 /r
VPMOVDW xmm1/m64 {k1}{z} xmm2

HVM

V/V

AVX512VL
AVX512F

Converts 4 packed double-word integers from xmm2 into 4 packed word integers in xmm1/m64 with truncation under writemask k1.

EVEX.128.F3.0F38.W0 23 /r
VPMOVSDW xmm1/m64 {k1}{z} xmm2

HVM

V/V

AVX512VL
AVX512F

Converts 4 packed signed double-word integers from xmm2 into 4 packed signed word integers in ymm1/m64 using signed saturation under writemask k1.

EVEX.128.F3.0F38.W0 13 /r
VPMOVUSDW xmm1/m64 {k1}{z} xmm2

HVM

V/V

AVX512VL
AVX512F

Converts 4 packed unsigned double-word integers from xmm2 into 4 packed unsigned word integers in xmm1/m64 using unsigned saturation under writemask k1.

EVEX.256.F3.0F38.W0 33 /r
VPMOVDW xmm1/m128 {k1}{z} ymm2

HVM

V/V

AVX512VL
AVX512F

Converts 8 packed double-word integers from ymm2 into 8 packed word integers in xmm1/m128 with truncation under writemask k1.

EVEX.256.F3.0F38.W0 23 /r
VPMOVSDW xmm1/m128 {k1}{z} ymm2

HVM

V/V

AVX512VL
AVX512F

Converts 8 packed signed double-word integers from ymm2 into 8 packed signed word integers in xmm1/m128 using signed saturation under writemask k1.

EVEX.256.F3.0F38.W0 13 /r
VPMOVUSDW xmm1/m128 {k1}{z} ymm2

HVM

V/V

AVX512VL
AVX512F

Converts 8 packed unsigned double-word integers from ymm2 into 8 packed unsigned word integers in xmm1/m128 using unsigned saturation under writemask k1.

EVEX.512.F3.0F38.W0 33 /r
VPMOVDW ymm1/m256 {k1}{z} zmm2

HVM

V/V

AVX512F

Converts 16 packed double-word integers from zmm2 into 16 packed word integers in ymm1/m256 with truncation under writemask k1.

EVEX.512.F3.0F38.W0 23 /r
VPMOVSDW ymm1/m256 {k1}{z} zmm2

HVM

V/V

AVX512F

Converts 16 packed signed double-word integers from zmm2 into 16 packed signed word integers in ymm1/m256 using signed saturation under writemask k1.

EVEX.512.F3.0F38.W0 13 /r
VPMOVUSDW ymm1/m256 {k1}{z} zmm2

HVM

V/V

AVX512F

Converts 16 packed unsigned double-word integers from zmm2 into 16 packed unsigned word integers in ymm1/m256 using unsigned saturation under writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

HVM

ModRM:r/m (w)

ModRM:reg (r)

NA

NA

Description

VPMOVDW down converts 32-bit integer elements in the source operand (the second operand) into packed words using truncation. VPMOVSDW converts signed 32-bit integers into packed signed words using signed saturation. VPMOVUSDW convert unsigned double-word values into unsigned word values using unsigned saturation.

The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a 256/128/64-bit memory location.

Down-converted word elements are written to the destination operand (the first operand) from the least-significant word. Word elements of the destination operand are updated according to the writemask. Bits (MAX_VL-1:256/128/64) of the register destination are zeroed.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVDW instruction (EVEX encoded versions) when dest is a register

    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j <-  0 TO KL-1
          i <-  j * 16
          m <-  j * 32
          IF k1[j] OR *no writemask*
                THEN DEST[i+15:i] <-  TruncateDoubleWordToWord (SRC[m+31:m])
                ELSE 
                      IF *merging-masking* ; merging-masking
                            THEN *DEST[i+15:i] remains unchanged*
                            ELSE *zeroing-masking* ; zeroing-masking
                                  DEST[i+15:i] <-  0
                      FI
          FI;
    ENDFOR
    DEST[MAX_VL-1:VL/2] <-  0;

VPMOVDW instruction (EVEX encoded versions) when dest is memory

    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j <-  0 TO KL-1
          i <-  j * 16
          m <-  j * 32
          IF k1[j] OR *no writemask*
                THEN DEST[i+15:i] <-  TruncateDoubleWordToWord (SRC[m+31:m])
                ELSE 
                      *DEST[i+15:i] remains unchanged* ; merging-masking
          FI;
    ENDFOR

VPMOVSDW instruction (EVEX encoded versions) when dest is a register

    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j <-  0 TO KL-1
          i <-  j * 16
          m <-  j * 32
          IF k1[j] OR *no writemask*
                THEN DEST[i+15:i] <-  SaturateSignedDoubleWordToWord (SRC[m+31:m])
                ELSE 
                      IF *merging-masking* ; merging-masking
                            THEN *DEST[i+15:i] remains unchanged*
                            ELSE *zeroing-masking* ; zeroing-masking
                                  DEST[i+15:i] <-  0
                      FI
          FI;
    ENDFOR
    DEST[MAX_VL-1:VL/2] <-  0;

VPMOVSDW instruction (EVEX encoded versions) when dest is memory

    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j <-  0 TO KL-1
          i <-  j * 16
          m <-  j * 32
          IF k1[j] OR *no writemask*
                THEN DEST[i+15:i] <-  SaturateSignedDoubleWordToWord (SRC[m+31:m])
                ELSE 
                      *DEST[i+15:i] remains unchanged* ; merging-masking
          FI;
    ENDFOR

VPMOVUSDW instruction (EVEX encoded versions) when dest is a register

    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j <-  0 TO KL-1
          i <-  j * 16
          m <-  j * 32
          IF k1[j] OR *no writemask*
                THEN DEST[i+15:i] <-  SaturateUnsignedDoubleWordToWord (SRC[m+31:m])
                ELSE 
                      IF *merging-masking* ; merging-masking
                            THEN *DEST[i+15:i] remains unchanged*
                            ELSE *zeroing-masking* ; zeroing-masking
                                  DEST[i+15:i] <-  0
                      FI
          FI;
    ENDFOR
    DEST[MAX_VL-1:VL/2] <-  0;

VPMOVUSDW instruction (EVEX encoded versions) when dest is memory

    (KL, VL) = (4, 128), (8, 256), (16, 512)
    FOR j <-  0 TO KL-1
          i <-  j * 16
          m <-  j * 32
          IF k1[j] OR *no writemask*
                THEN DEST[i+15:i] <-  SaturateUnsignedDoubleWordToWord (SRC[m+31:m])
                ELSE 
                      *DEST[i+15:i] remains unchanged* ; merging-masking
          FI;
    ENDFOR

Intel C/C++ Compiler Intrinsic Equivalents

VPMOVDW __m256i _mm512_cvtepi32_epi16( __m512i a);
VPMOVDW __m256i _mm512_mask_cvtepi32_epi16(__m256i s, __mmask16 k, __m512i a);
VPMOVDW __m256i _mm512_maskz_cvtepi32_epi16( __mmask16 k, __m512i a);
VPMOVDW void _mm512_mask_cvtepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);
VPMOVSDW __m256i _mm512_cvtsepi32_epi16( __m512i a);
VPMOVSDW __m256i _mm512_mask_cvtsepi32_epi16(__m256i s, __mmask16 k, __m512i a);
VPMOVSDW __m256i _mm512_maskz_cvtsepi32_epi16( __mmask16 k, __m512i a);
VPMOVSDW void _mm512_mask_cvtsepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);
VPMOVUSDW __m256i _mm512_cvtusepi32_epi16 __m512i a);
VPMOVUSDW __m256i _mm512_mask_cvtusepi32_epi16(__m256i s, __mmask16 k, __m512i a);
VPMOVUSDW __m256i _mm512_maskz_cvtusepi32_epi16( __mmask16 k, __m512i a);
VPMOVUSDW void _mm512_mask_cvtusepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);
VPMOVUSDW __m128i _mm256_cvtusepi32_epi16(__m256i a);
VPMOVUSDW __m128i _mm256_mask_cvtusepi32_epi16(__m128i a, __mmask8 k, __m256i b);
VPMOVUSDW __m128i _mm256_maskz_cvtusepi32_epi16( __mmask8 k, __m256i b);
VPMOVUSDW void _mm256_mask_cvtusepi32_storeu_epi16(void * , __mmask8 k, __m256i b);
VPMOVUSDW __m128i _mm_cvtusepi32_epi16(__m128i a);
VPMOVUSDW __m128i _mm_mask_cvtusepi32_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVUSDW __m128i _mm_maskz_cvtusepi32_epi16( __mmask8 k, __m128i b);
VPMOVUSDW void _mm_mask_cvtusepi32_storeu_epi16(void * , __mmask8 k, __m128i b);
VPMOVSDW __m128i _mm256_cvtsepi32_epi16(__m256i a);
VPMOVSDW __m128i _mm256_mask_cvtsepi32_epi16(__m128i a, __mmask8 k, __m256i b);
VPMOVSDW __m128i _mm256_maskz_cvtsepi32_epi16( __mmask8 k, __m256i b);
VPMOVSDW void _mm256_mask_cvtsepi32_storeu_epi16(void * , __mmask8 k, __m256i b);
VPMOVSDW __m128i _mm_cvtsepi32_epi16(__m128i a);
VPMOVSDW __m128i _mm_mask_cvtsepi32_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVSDW __m128i _mm_maskz_cvtsepi32_epi16( __mmask8 k, __m128i b);
VPMOVSDW void _mm_mask_cvtsepi32_storeu_epi16(void * , __mmask8 k, __m128i b);
VPMOVDW __m128i _mm256_cvtepi32_epi16(__m256i a);
VPMOVDW __m128i _mm256_mask_cvtepi32_epi16(__m128i a, __mmask8 k, __m256i b);
VPMOVDW __m128i _mm256_maskz_cvtepi32_epi16( __mmask8 k, __m256i b);
VPMOVDW void _mm256_mask_cvtepi32_storeu_epi16(void * , __mmask8 k, __m256i b);
VPMOVDW __m128i _mm_cvtepi32_epi16(__m128i a);
VPMOVDW __m128i _mm_mask_cvtepi32_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVDW __m128i _mm_maskz_cvtepi32_epi16( __mmask8 k, __m128i b);
VPMOVDW void _mm_mask_cvtepi32_storeu_epi16(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E6.

#UD If EVEX.vvvv != 1111B.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..