모두의 코드
VRSQRT14PD (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 538 번 읽혔습니다.

VRSQRT14PD

Compute Approximate Reciprocals of Square Roots of Packed Float64 Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.128.66.0F38.W1 4E /r
VRSQRT14PD xmm1 {k1}{z} xmm2/m128/m64bcst

FV

V/V

AVX512VL
AVX512F

Computes the approximate reciprocal square roots of the packed double-precision floating-point values in xmm2/m128/m64bcst and stores the results in xmm1. Under writemask.

EVEX.256.66.0F38.W1 4E /r
VRSQRT14PD ymm1 {k1}{z} ymm2/m256/m64bcst

FV

V/V

AVX512VL
AVX512F

Computes the approximate reciprocal square roots of the packed double-precision floating-point values in ymm2/m256/m64bcst and stores the results in ymm1. Under writemask.

EVEX.512.66.0F38.W1 4E /r
VRSQRT14PD zmm1 {k1}{z} zmm2/m512/m64bcst

FV

V/V

AVX512F

Computes the approximate reciprocal square roots of the packed double-precision floating-point values in zmm2/m512/m64bcst and stores the results in zmm1 under writemask.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

FV

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

Description

This instruction performs a SIMD computation of the approximate reciprocals of the square roots of the eight packed double-precision floating-point values in the source operand (the second operand) and stores the packed double-precision floating-point results in the destination operand (the first operand) according to the writemask. The maximum relative error for this approximation is less than 2-14 .

EVEX.512 encoded version: The source operand can be a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.256 encoded version: The source operand is a YMM register, a 256-bit memory location, or a 256-bit vector broadcasted from a 64-bit memory location. The destination operand is a YMM register, conditionally updated using writemask k1.

EVEX.128 encoded version: The source operand is a XMM register, a 128-bit memory location, or a 128-bit vector broadcasted from a 64-bit memory location. The destination operand is a XMM register, conditionally updated using writemask k1.

The VRSQRT14PD instruction is not affected by the rounding control bits in the MXCSR register. When a source value is a 0.0, an $\infty$ with the sign of the source value is returned. When the source operand is an +$\infty$ then +ZERO value is returned. A denormal source value is treated as zero only if DAZ bit is set in MXCSR. Otherwise it is treated correctly and performs the approximation with the specified masked response. When a source value is a negative value (other than 0.0) a floating-point QNaNindefinite is returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned.

MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.

Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

A numerically exact implementation of VRSQRT14xx can be found at

https://software.intel.com/en-us/arti-cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT14PD (EVEX encoded versions)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask* THEN
                IF (EVEX.b = 1) AND (SRC *is memory*)
                      THEN DEST[i+63:i] <-  APPROXIMATE(1.0/ SQRT(SRC[63:0]));
                      ELSE DEST[i+63:i] <-  APPROXIMATE(1.0/ SQRT(SRC[i+63:i]));
                FI;
    ELSE 
          IF *merging-masking* ; merging-masking
                THEN *DEST[i+63:i] remains unchanged*
                ELSE  ; zeroing-masking
                      DEST[i+63:i] <-  0
          FI;
    FI;
ENDFOR;
DEST[MAX_VL-1:VL] <-  0

Table 5-23. VRSQRT14PD Special Cases

Input value

Result value

Comments

Any denormal

Normal

Cannot generate overflow

X = 2-2n

2n

X < 0

QNaN_Indefinite

Including -INF

X = -0

-INF

X = +0

+INF

X = +INF

+0

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT14PD __m512d _mm512_rsqrt14_pd(__m512d a);
VRSQRT14PD __m512d _mm512_mask_rsqrt14_pd(__m512d s, __mmask8 k, __m512d a);
VRSQRT14PD __m512d _mm512_maskz_rsqrt14_pd(__mmask8 k, __m512d a);
VRSQRT14PD __m256d _mm256_rsqrt14_pd(__m256d a);
VRSQRT14PD __m256d _mm512_mask_rsqrt14_pd(__m256d s, __mmask8 k, __m256d a);
VRSQRT14PD __m256d _mm512_maskz_rsqrt14_pd(__mmask8 k, __m256d a);
VRSQRT14PD __m128d _mm_rsqrt14_pd(__m128d a);
VRSQRT14PD __m128d _mm_mask_rsqrt14_pd(__m128d s, __mmask8 k, __m128d a);
VRSQRT14PD __m128d _mm_maskz_rsqrt14_pd(__mmask8 k, __m128d a);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E4.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..