모두의 코드
CMPPD (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 542 번 읽혔습니다.

CMPPD

Compare Packed Double-Precision Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

66 0F C2 /r ib
CMPPD xmm1 xmm2/m128 imm8

RMI

V/V

SSE2

Compare packed double-precision floating-point values in xmm2/m128 and xmm1 using bits 2:0 of imm8 as a comparison predicate.

VEX.NDS.128.66.0F.WIG C2 /r ib
VCMPPD xmm1 xmm2 xmm3/m128 imm8

RVMI

V/V

AVX

Compare packed double-precision floating-point values in xmm3/m128 and xmm2 using bits 4:0 of imm8 as a comparison predicate.

VEX.NDS.256.66.0F.WIG C2 /r ib
VCMPPD ymm1 ymm2 ymm3/m256 imm8

RVMI

V/V

AVX

Compare packed double-precision floating-point values in ymm3/m256 and ymm2 using bits 4:0 of imm8 as a comparison predicate.

EVEX.NDS.128.66.0F.W1 C2 /r ib
VCMPPD k1 {k2} xmm2 xmm3/m128/m64bcst imm8

FV

V/V

AVX512VL
AVX512F

Compare packed double-precision floating-point values in xmm3/m128/m64bcst and xmm2 using bits 4:0 of imm8 as a comparison predicate with writemask k2 and leave the result in mask register k1.

EVEX.NDS.256.66.0F.W1 C2 /r ib
VCMPPD k1 {k2} ymm2 ymm3/m256/m64bcst imm8

FV

V/V

AVX512VL
AVX512F

Compare packed double-precision floating-point values in ymm3/m256/m64bcst and ymm2 using bits 4:0 of imm8 as a comparison predicate with writemask k2 and leave the result in mask register k1.

EVEX.NDS.512.66.0F.W1 C2 /r ib
VCMPPD k1 {k2} zmm2 zmm3/m512/m64bcst{sae} imm8

FV

V/V

AVX512F

Compare packed double-precision floating-point values in zmm3/m512/m64bcst and zmm2 using bits 4:0 of imm8 as a comparison predicate with writemask k2 and leave the result in mask register k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RMI

ModRM:reg (r, w)

ModRM:r/m (r)

Imm8

NA

RVMI

ModRM:reg (w)

VEX.vvvv

ModRM:r/m (r)

Imm8

FV

ModRM:reg (w)

EVEX.vvvv

ModRM:r/m (r)

Imm8

Description

Performs a SIMD compare of the packed double-precision floating-point values in the second source operand and the first source operand and returns the results of the comparison to the destination operand. The comparison predicate operand (immediate byte) specifies the type of comparison performed on each pair of packed values in the two source operands.

EVEX encoded versions: The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand (first operand) is an opmask register. Comparison results are written to the destination operand under the writemask k2. Each comparison result is a single mask bit of 1 (comparison true) or 0 (comparison false).

VEX.256 encoded version: The first source operand (second operand) is a YMM register. The second source operand (third operand) can be a YMM register or a 256-bit memory location. The destination operand (first operand) is a YMM register. Four comparisons are performed with results written to the destination operand. The result of each comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison false).

128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The second source operand (second operand) can be an XMM register or 128-bit memory location. Bits (MAXVL-1:128) of the corresponding ZMM destination register remain unchanged. Two comparisons are performed with results written to bits 127:0 of the destination operand. The result of each comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison false).

VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source operand (third operand) can be an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the desti-nation ZMM register are zeroed. Two comparisons are performed with results written to bits 127:0 of the destina-tion operand.

The comparison predicate operand is an 8-bit immediate:

  • For instructions encoded using the VEX or EVEX prefix, bits 4:0 define the type of comparison to be performed (see Table 3-1). Bits 5 through 7 of the immediate are reserved.

  • For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see the first 8 rows of Table 3-1). Bits 3 through 7 of the immediate are reserved.

Table 3-1. Comparison Predicate for CMPPD and CMPPS Instructions

Predicate

imm8

Description

Result: A I

s 1st Ope

rand, B Is 2

nd Operand

Signals

Value

A >B

A < B

A = B

Unordered\footnote{1}

#IA on QNAN

EQ_OQ (EQ)

0H

Equal (ordered, non-signaling)

False

False

True

False

No

LT_OS (LT)

1H

Less-than (ordered, signaling)

False

True

False

False

Yes

LE_OS (LE)

2H

Less-than-or-equal (ordered, signaling)

False

True

True

False

Yes

UNORD_Q (UNORD)

3H

Unordered (non-signaling)

False

False

False

True

No

NEQ_UQ (NEQ)

4H

Not-equal (unordered, non-signaling)

True

True

False

True

No

NLT_US (NLT)

5H

Not-less-than (unordered, signaling)

True

False

True

True

Yes

NLE_US (NLE)

6H

Not-less-than-or-equal (unordered, signaling)

True

False

False

True

Yes

ORD_Q (ORD)

7H

Ordered (non-signaling)

True

True

True

False

No

EQ_UQ

8H

Equal (unordered, non-signaling)

False

False

True

True

No

NGE_US (NGE)

9H

Not-greater-than-or-equal (unordered, signaling)

False

True

False

True

Yes

NGT_US (NGT)

AH

Not-greater-than (unordered, signaling)

False

True

True

True

Yes

FALSE_OQ(FALSE)

BH

False (ordered, non-signaling)

False

False

False

False

No

NEQ_OQ

CH

Not-equal (ordered, non-signaling)

True

True

False

False

No

GE_OS (GE)

DH

Greater-than-or-equal (ordered, signaling)

True

False

True

False

Yes

GT_OS (GT)

EH

Greater-than (ordered, signaling)

True

False

False

False

Yes

TRUE_UQ(TRUE)

FH

True (unordered, non-signaling)

True

True

True

True

No

EQ_OS

10H

Equal (ordered, signaling)

False

False

True

False

Yes

LT_OQ

11H

Less-than (ordered, nonsignaling)

False

True

False

False

No

LE_OQ

12H

Less-than-or-equal (ordered, nonsignaling)

False

True

True

False

No

UNORD_S

13H

Unordered (signaling)

False

False

False

True

Yes

NEQ_US

14H

Not-equal (unordered, signaling)

True

True

False

True

Yes

NLT_UQ

15H

Not-less-than (unordered, nonsignaling)

True

False

True

True

No

NLE_UQ

16H

Not-less-than-or-equal (unordered, nonsig-naling)

True

False

False

True

No

ORD_S

17H

Ordered (signaling)

True

True

True

False

Yes

EQ_US

18H

Equal (unordered, signaling)

False

False

True

True

Yes

NGE_UQ

19H

Not-greater-than-or-equal (unordered, non-signaling)

False

True

False

True

No

Table 3-1. Comparison Predicate for CMPPD and CMPPS Instructions (Contd.)

Predicate

imm8

Description

Result: A I

s 1st Ope

rand, B Is 2

nd Operand

Signals

Value

A >B

A < B

A = B

Unordered\footnote{1}

#IA on QNAN

NGT_UQ

1AH

Not-greater-than (unordered, nonsignaling)

False

True

True

True

No

FALSE_OS

1BH

False (ordered, signaling)

False

False

False

False

Yes

NEQ_OS

1CH

Not-equal (ordered, signaling)

True

True

False

False

Yes

GE_OQ

1DH

Greater-than-or-equal (ordered, nonsignal-ing)

True

False

True

False

No

GT_OQ

1EH

Greater-than (ordered, nonsignaling)

True

False

False

False

No

TRUE_US

1FH

True (unordered, signaling)

True

True

True

True

Yes

  1. If either operand A or B is a NAN.

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as an input operand will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that processors with "CPUID.1H:ECX.AVX =0" do not implement the "greater-than", "greater-than-or-equal", "not-greater than", and "not-greater-than-or-equal relations" predicates. These comparisons can be made either by using the inverse relationship (that is, use the "not-less-than-or-equal" to make a "greater-than" comparison) or by using software emulation. When using software emulation, the program must swap the operands (copying registers when necessary to protect the data that will now be in the destination), and then perform the compare using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7 (Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2A) under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand CMPPD instruction, for processors with "CPUID.1H:ECX.AVX =0". See Table 3-2. Compiler should treat reserved Imm8 values as illegal syntax.

Table 3-2. Pseudo-Op and CMPPD Implementation

The greater-than relations that the processor does not implement require more than one instruction to emulate in software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to the correct destination register and that the source operand is left intact.)

Processors with "CPUID.1H:ECX.AVX =1" implement the full complement of 32 predicates shown in Table 3-3, soft-ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand pseudo-ops in addition to the four-operand VCMPPD instruction. See Table 3-3, where the notations of reg1 reg2, and reg3 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal

Pseudo-Op

CMPPD Implementation

CMPEQPD xmm1, xmm2

CMPPD xmm1, xmm2, 0

CMPLTPD xmm1, xmm2

CMPPD xmm1, xmm2, 1

CMPLEPD xmm1, xmm2

CMPPD xmm1, xmm2, 2

CMPUNORDPD xmm1, xmm2

CMPPD xmm1, xmm2, 3

CMPNEQPD xmm1, xmm2

CMPPD xmm1, xmm2, 4

CMPNLTPD xmm1, xmm2

CMPPD xmm1, xmm2, 5

CMPNLEPD xmm1, xmm2

CMPPD xmm1, xmm2, 6

CMPORDPD xmm1, xmm2

CMPPD xmm1, xmm2, 7

syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-face. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPPD instructions in a similar fashion by extending the syntax listed in Table 3-3.:

Table 3-3. Pseudo-Op and VCMPPD Implementation

Pseudo-Op

CMPPD Implementation

VCMPEQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 0

VCMPLTPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 1

VCMPLEPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 2

VCMPUNORDPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 3

VCMPNEQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 4

VCMPNLTPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 5

VCMPNLEPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 6

VCMPORDPD reg1, reg2, reg3
VCMPEQ_UQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 7
VCMPPD reg1, reg2, reg3, 8

VCMPNGEPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 9

VCMPNGTPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 0AH

VCMPFALSEPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 0BH

VCMPNEQ_OQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 0CH

VCMPGEPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 0DH

VCMPGTPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 0EH

VCMPTRUEPD reg1, reg2, reg3
VCMPEQ_OSPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 0FH
VCMPPD reg1, reg2, reg3, 10H

VCMPLT_OQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 11H

VCMPLE_OQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 12H

VCMPUNORD_SPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 13H

VCMPNEQ_USPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 14H

VCMPNLT_UQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 15H

VCMPNLE_UQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 16H

VCMPORD_SPD reg1, reg2, reg3
VCMPEQ_USPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 17H
VCMPPD reg1, reg2, reg3, 18H

VCMPNGE_UQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 19H

VCMPNGT_UQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 1AH

VCMPFALSE_OSPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 1BH

VCMPNEQ_OSPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 1CH

VCMPGE_OQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 1DH

VCMPGT_OQPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 1EH

VCMPTRUE_USPD reg1, reg2, reg3

VCMPPD reg1, reg2, reg3, 1FH

Operation

VCMPPD (EVEX encoded versions)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k2[j] OR *no writemask*
          THEN 
                IF (EVEX.b = 1) AND (SRC2 *is memory*)
                      THEN
                            CMP <-  SRC1[i+63:i] OP5 SRC2[63:0]
                      ELSE 
                            CMP <-  SRC1[i+63:i] OP5 SRC2[i+63:i]
                FI;
                IF CMP = TRUE
                      THEN DEST[j] <-  1;
                      ELSE DEST[j] <-  0; FI;
          ELSE  DEST[j] <-  0  ; zeroing-masking only
    FI;
ENDFOR
DEST[MAX_KL-1:KL] <-  0

VCMPPD (VEX.256 encoded version)

CMP0 <-  SRC1[63:0] OP5 SRC2[63:0];
CMP1 <-  SRC1[127:64] OP5 SRC2[127:64];
CMP2 <-  SRC1[191:128] OP5 SRC2[191:128];
CMP3 <-  SRC1[255:192] OP5 SRC2[255:192];
IF CMP0 = TRUE
    THEN DEST[63:0] <-  FFFFFFFFFFFFFFFFH;
    ELSE DEST[63:0] <-  0000000000000000H; FI;
IF CMP1 = TRUE
    THEN DEST[127:64] <-  FFFFFFFFFFFFFFFFH;
    ELSE DEST[127:64] <-  0000000000000000H; FI;
IF CMP2 = TRUE
    THEN DEST[191:128] <-  FFFFFFFFFFFFFFFFH;
    ELSE DEST[191:128] <-  0000000000000000H; FI;
IF CMP3 = TRUE
    THEN DEST[255:192] <-  FFFFFFFFFFFFFFFFH;
    ELSE DEST[255:192] <-  0000000000000000H; FI;
DEST[MAX_VL-1:256] <-  0

VCMPPD (VEX.128 encoded version)

CMP0 <-  SRC1[63:0] OP5 SRC2[63:0];
CMP1 <-  SRC1[127:64] OP5 SRC2[127:64];
IF CMP0 = TRUE
    THEN DEST[63:0] <-  FFFFFFFFFFFFFFFFH;
    ELSE DEST[63:0] <-  0000000000000000H; FI;
IF CMP1 = TRUE
    THEN DEST[127:64] <-  FFFFFFFFFFFFFFFFH;
    ELSE DEST[127:64] <-  0000000000000000H; FI;
DEST[MAX_VL-1:128] <-  0

CMPPD (128-bit Legacy SSE version)

CMP0 <-  SRC1[63:0] OP3 SRC2[63:0];
CMP1 <-  SRC1[127:64] OP3 SRC2[127:64];
IF CMP0 = TRUE
    THEN DEST[63:0] <-  FFFFFFFFFFFFFFFFH;
    ELSE DEST[63:0] <-  0000000000000000H; FI;
IF CMP1 = TRUE
    THEN DEST[127:64] <-  FFFFFFFFFFFFFFFFH;
    ELSE DEST[127:64] <-  0000000000000000H; FI;
DEST[MAX_VL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCMPPD __mmask8 _mm512_cmp_pd_mask(__m512d a, __m512d b, int imm);
VCMPPD __mmask8 _mm512_cmp_round_pd_mask(__m512d a, __m512d b, int imm,
                                         int sae);
VCMPPD __mmask8 _mm512_mask_cmp_pd_mask(__mmask8 k1, __m512d a, __m512d b,
                                        int imm);
VCMPPD __mmask8 _mm512_mask_cmp_round_pd_mask(__mmask8 k1, __m512d a, __m512d b,
                                              int imm, int sae);
VCMPPD __mmask8 _mm256_cmp_pd_mask(__m256d a, __m256d b, int imm);
VCMPPD __mmask8 _mm256_mask_cmp_pd_mask(__mmask8 k1, __m256d a, __m256d b,
                                        int imm);
VCMPPD __mmask8 _mm_cmp_pd_mask(__m128d a, __m128d b, int imm);
VCMPPD __mmask8 _mm_mask_cmp_pd_mask(__mmask8 k1, __m128d a, __m128d b,
                                     int imm);
VCMPPD __m256 _mm256_cmp_pd(__m256d a, __m256d b, int imm)(V) CMPPD __m128
    _mm_cmp_pd(__m128d a, __m128d b, int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in Table 3-1.

Denormal

Other Exceptions

VEX-encoded instructions, see Exceptions Type 2.

EVEX-encoded instructions, see Exceptions Type E2.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..