모두의 코드
CVTPS2DQ (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 559 번 읽혔습니다.

CVTPS2DQ

Convert Packed Single-Precision Floating-Point Values to Packed Signed Doubleword Integer Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

66 0F 5B /r
CVTPS2DQ xmm1 xmm2/m128

RM

V/V

SSE2

Convert four packed single-precision floating-point values from xmm2/mem to four packed signed doubleword values in xmm1.

VEX.128.66.0F.WIG 5B /r
VCVTPS2DQ xmm1 xmm2/m128

RM

V/V

AVX

Convert four packed single-precision floating-point values from xmm2/mem to four packed signed doubleword values in xmm1.

VEX.256.66.0F.WIG 5B /r
VCVTPS2DQ ymm1 ymm2/m256

RM

V/V

AVX

Convert eight packed single-precision floating-point values from ymm2/mem to eight packed signed doubleword values in ymm1.

EVEX.128.66.0F.W0 5B /r
VCVTPS2DQ xmm1 {k1}{z} xmm2/m128/m32bcst

FV

V/V

AVX512VL
AVX512F

Convert four packed single precision floating-point values from xmm2/m128/m32bcst to four packed signed doubleword values in xmm1 subject to writemask k1.

EVEX.256.66.0F.W0 5B /r
VCVTPS2DQ ymm1 {k1}{z} ymm2/m256/m32bcst

FV

V/V

AVX512VL
AVX512F

Convert eight packed single precision floating-point values from ymm2/m256/m32bcst to eight packed signed doubleword values in ymm1 subject to writemask k1.

EVEX.512.66.0F.W0 5B /r
VCVTPS2DQ zmm1 {k1}{z} zmm2/m512/m32bcst{er}

FV

V/V

AVX512F

Convert sixteen packed single-precision floating-point values from zmm2/m512/m32bcst to sixteen packed signed doubleword values in zmm1 subject to writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

FV

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

Description

Converts four, eight or sixteen packed single-precision floating-point values in the source operand to four, eight or sixteen signed doubleword integers in the destination operand.

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register or the embedded rounding control bits. If a converted result cannot be represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (2w-1 , where w represents the number of bits in the destination format) is returned.

EVEX encoded versions: The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM register conditionally updated with writemask k1.

VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed.

VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.

VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

Operation

VCVTPS2DQ (encoded versions) when src operand is a register

(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) 
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-
                Convert_Single_Precision_Floating_Point_To_Integer(SRC[i+31:i])
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VCVTPS2DQ (EVEX encoded versions) when src operand is a memory source

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO 15
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN 
                IF (EVEX.b = 1) 
                      THEN
                            DEST[i+31:i] <-
                Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
                      ELSE 
                            DEST[i+31:i] <-
                Convert_Single_Precision_Floating_Point_To_Integer(SRC[i+31:i])
                FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VCVTPS2DQ (VEX.256 encoded version)

DEST[31:0] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96)
DEST[159:128] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[159:128])
DEST[191:160] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[191:160])
DEST[223:192] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[223:192])
DEST[255:224] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[255:224])

VCVTPS2DQ (VEX.128 encoded version)

DEST[31:0] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[MAX_VL-1:128] <- 0

CVTPS2DQ (128-bit Legacy SSE version)

DEST[31:0] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[MAX_VL-1:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPS2DQ __m512i _mm512_cvtps_epi32(__m512 a);
VCVTPS2DQ __m512i _mm512_mask_cvtps_epi32(__m512i s, __mmask16 k, __m512 a);
VCVTPS2DQ __m512i _mm512_maskz_cvtps_epi32(__mmask16 k, __m512 a);
VCVTPS2DQ __m512i _mm512_cvt_roundps_epi32(__m512 a, int r);
VCVTPS2DQ __m512i _mm512_mask_cvt_roundps_epi32(__m512i s, __mmask16 k,
                                                __m512 a, int r);
VCVTPS2DQ __m512i _mm512_maskz_cvt_roundps_epi32(__mmask16 k, __m512 a, int r);
VCVTPS2DQ __m256i _mm256_mask_cvtps_epi32(__m256i s, __mmask8 k, __m256 a);
VCVTPS2DQ __m256i _mm256_maskz_cvtps_epi32(__mmask8 k, __m256 a);
VCVTPS2DQ __m128i _mm_mask_cvtps_epi32(__m128i s, __mmask8 k, __m128 a);
VCVTPS2DQ __m128i _mm_maskz_cvtps_epi32(__mmask8 k, __m128 a);
VCVTPS2DQ __ m256i _mm256_cvtps_epi32(__m256 a) CVTPS2DQ __m128i
    _mm_cvtps_epi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision

Other Exceptions

VEX-encoded instructions, see Exceptions Type 2;

EVEX-encoded instructions, see Exceptions Type E2.

#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..