모두의 코드
CVTPS2DQ (Intel x86/64 assembly instruction)
CVTPS2DQ
Convert Packed Single-Precision Floating-Point Values to Packed Signed Doubleword Integer Values
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
| RM | V/V | SSE2 | Convert four packed single-precision floating-point values from xmm2/mem to four packed signed doubleword values in xmm1. |
| RM | V/V | AVX | Convert four packed single-precision floating-point values from xmm2/mem to four packed signed doubleword values in xmm1. |
| RM | V/V | AVX | Convert eight packed single-precision floating-point values from ymm2/mem to eight packed signed doubleword values in ymm1. |
| FV | V/V | AVX512VL | Convert four packed single precision floating-point values from xmm2/m128/m32bcst to four packed signed doubleword values in xmm1 subject to writemask k1. |
| FV | V/V | AVX512VL | Convert eight packed single precision floating-point values from ymm2/m256/m32bcst to eight packed signed doubleword values in ymm1 subject to writemask k1. |
| FV | V/V | AVX512F | Convert sixteen packed single-precision floating-point values from zmm2/m512/m32bcst to sixteen packed signed doubleword values in zmm1 subject to writemask k1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RM | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
FV | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
Description
Converts four, eight or sixteen packed single-precision floating-point values in the source operand to four, eight or sixteen signed doubleword integers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register or the embedded rounding control bits. If a converted result cannot be represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (2w-1 , where w represents the number of bits in the destination format) is returned.
EVEX encoded versions: The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM register conditionally updated with writemask k1.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTPS2DQ (encoded versions) when src operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_RM(EVEX.RC); ELSE SET_RM(MXCSR.RM); FI; FOR j <- 0 TO KL-1 i <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[i+31:i]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
VCVTPS2DQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j <- 0 TO 15 i <- j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]) ELSE DEST[i+31:i] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[i+31:i]) FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
VCVTPS2DQ (VEX.256 encoded version)
DEST[31:0] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]) DEST[63:32] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]) DEST[95:64] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]) DEST[127:96] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96) DEST[159:128] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[159:128]) DEST[191:160] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[191:160]) DEST[223:192] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[223:192]) DEST[255:224] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[255:224])
VCVTPS2DQ (VEX.128 encoded version)
DEST[31:0] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]) DEST[63:32] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]) DEST[95:64] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]) DEST[127:96] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96]) DEST[MAX_VL-1:128] <- 0
CVTPS2DQ (128-bit Legacy SSE version)
DEST[31:0] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]) DEST[63:32] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]) DEST[95:64] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]) DEST[127:96] <- Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96]) DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPS2DQ __m512i _mm512_cvtps_epi32(__m512 a); VCVTPS2DQ __m512i _mm512_mask_cvtps_epi32(__m512i s, __mmask16 k, __m512 a); VCVTPS2DQ __m512i _mm512_maskz_cvtps_epi32(__mmask16 k, __m512 a); VCVTPS2DQ __m512i _mm512_cvt_roundps_epi32(__m512 a, int r); VCVTPS2DQ __m512i _mm512_mask_cvt_roundps_epi32(__m512i s, __mmask16 k, __m512 a, int r); VCVTPS2DQ __m512i _mm512_maskz_cvt_roundps_epi32(__mmask16 k, __m512 a, int r); VCVTPS2DQ __m256i _mm256_mask_cvtps_epi32(__m256i s, __mmask8 k, __m256 a); VCVTPS2DQ __m256i _mm256_maskz_cvtps_epi32(__mmask8 k, __m256 a); VCVTPS2DQ __m128i _mm_mask_cvtps_epi32(__m128i s, __mmask8 k, __m128 a); VCVTPS2DQ __m128i _mm_maskz_cvtps_epi32(__mmask8 k, __m128 a); VCVTPS2DQ __ m256i _mm256_cvtps_epi32(__m256 a) CVTPS2DQ __m128i _mm_cvtps_epi32(__m128 a)
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2;
EVEX-encoded instructions, see Exceptions Type E2.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
댓글을 불러오는 중입니다..