모두의 코드
CVTPS2PD (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 903 번 읽혔습니다.

CVTPS2PD

Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

0F 5A /r
CVTPS2PD xmm1 xmm2/m64

RM

V/V

SSE2

Convert two packed single-precision floating-point values in xmm2/m64 to two packed double-precision floating-point values in xmm1.

VEX.128.0F.WIG 5A /r
VCVTPS2PD xmm1 xmm2/m64

RM

V/V

AVX

Convert two packed single-precision floating-point values in xmm2/m64 to two packed double-precision floating-point values in xmm1.

VEX.256.0F.WIG 5A /r
VCVTPS2PD ymm1 xmm2/m128

RM

V/V

AVX

Convert four packed single-precision floating-point values in xmm2/m128 to four packed double-precision floating-point values in ymm1.

EVEX.128.0F.W0 5A /r
VCVTPS2PD xmm1 {k1}{z} xmm2/m64/m32bcst

HV

V/V

AVX512VL
AVX512F

Convert two packed single-precision floating-point values in xmm2/m64/m32bcst to packed double-precision floating-point values in xmm1 with writemask k1.

EVEX.256.0F.W0 5A /r
VCVTPS2PD ymm1 {k1}{z} xmm2/m128/m32bcst

HV

V/V

AVX512VL

Convert four packed single-precision floating-point values in xmm2/m128/m32bcst to packed double-precision floating-point values in ymm1 with writemask k1.

EVEX.512.0F.W0 5A /r
VCVTPS2PD zmm1 {k1}{z} ymm2/m256/m32bcst{sae}

HV

V/V

AVX512F

Convert eight packed single-precision floating-point values in ymm2/m256/b32bcst to eight packed double-precision floating-point values in zmm1 with writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

HV

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

Description

Converts two, four or eight packed single-precision floating-point values in the source operand (second operand) to two, four or eight packed double-precision floating-point values in the destination operand (first operand).

EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64-bits) register, a 256/128/64-bit memory location or a 256/128/64-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.

VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a YMM register. Bits (MAXVL-1:256) of the corresponding destination ZMM register are zeroed.

VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination operand is a XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination operand is an XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.

Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.

0 X X X 0 X C R S S E D X X 3 1 2 X 3 X 1 T 2
Figure 3-14. CVTPS2PD (VEX.256 encoded version)

Operation

VCVTPS2PD (EVEX encoded versions) when src operand is a register

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    k <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+63:i] <-
                Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[k+31:k])
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VCVTPS2PD (EVEX encoded versions) when src operand is a memory source

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    k <-  j * 32
    IF k1[j] OR *no writemask*
          THEN 
                IF (EVEX.b = 1) 
                      THEN
                            DEST[i+63:i] <-
                Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
                      ELSE 
                            DEST[i+63:i] <-
                Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[k+31:k])
                FI;
          ELSE 
IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VCVTPS2PD (VEX.256 encoded version)

DEST[63:0] <-  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] <-  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] <-  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] <-  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[127:96)
DEST[MAX_VL-1:256] <-  0

VCVTPS2PD (VEX.128 encoded version)

DEST[63:0] <-  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] <-  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAX_VL-1:128] <-  0

CVTPS2PD (128-bit Legacy SSE version)

DEST[63:0] <-  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] <-  Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAX_VL-1:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPS2PD __m512d _mm512_cvtps_pd(__m256 a);
VCVTPS2PD __m512d _mm512_mask_cvtps_pd(__m512d s, __mmask8 k, __m256 a);
VCVTPS2PD __m512d _mm512_maskz_cvtps_pd(__mmask8 k, __m256 a);
VCVTPS2PD __m512d _mm512_cvt_roundps_pd(__m256 a, int sae);
VCVTPS2PD __m512d _mm512_mask_cvt_roundps_pd(__m512d s, __mmask8 k, __m256 a,
                                             int sae);
VCVTPS2PD __m512d _mm512_maskz_cvt_roundps_pd(__mmask8 k, __m256 a, int sae);
VCVTPS2PD __m256d _mm256_mask_cvtps_pd(__m256d s, __mmask8 k, __m128 a);
VCVTPS2PD __m256d _mm256_maskz_cvtps_pd(__mmask8 k, __m128a);
VCVTPS2PD __m128d _mm_mask_cvtps_pd(__m128d s, __mmask8 k, __m128 a);
VCVTPS2PD __m128d _mm_maskz_cvtps_pd(__mmask8 k, __m128 a);
VCVTPS2PD __m256d _mm256_cvtps_pd(__m128 a) CVTPS2PD __m128d
    _mm_cvtps_pd(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Denormal

Other Exceptions

VEX-encoded instructions, see Exceptions Type 3;

EVEX-encoded instructions, see Exceptions Type E3.

#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..