모두의 코드
MOVSLDUP (Intel x86/64 assembly instruction)
MOVSLDUP
Replicate Single FP Values
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
| A | V/V | SSE3 | Move even index single-precision floating-point values from xmm2/mem and duplicate each element into xmm1. |
| RM | V/V | AVX | Move even index single-precision floating-point values from xmm2/mem and duplicate each element into xmm1. |
| RM | V/V | AVX | Move even index single-precision floating-point values from ymm2/mem and duplicate each element into ymm1. |
| FVM | V/V | AVX512VL | Move even index single-precision floating-point values from xmm2/m128 and duplicate each element into xmm1 under writemask. |
| FVM | V/V | AVX512VL | Move even index single-precision floating-point values from ymm2/m256 and duplicate each element into ymm1 under writemask. |
| FVM | V/V | AVX512F | Move even index single-precision floating-point values from zmm2/m512 and duplicate each element into zmm1 under writemask. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RM | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
FVM | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
Description
Duplicates even-indexed single-precision floating-point values from the source operand (the second operand). See Figure 4-4. The source operand is an XMM, YMM or ZMM register or 128, 256 or 512-bit memory location and the destination operand is an XMM, YMM or ZMM register.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed.
VEX.256 encoded version: Bits (MAXVL-1:256) of the destination register are zeroed.
EVEX encoded version: The destination operand is updated at 32-bit granularity according to the writemask.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Operation
VMOVSLDUP (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512) TMP_SRC[31:0] <- SRC[31:0] TMP_SRC[63:32] <- SRC[31:0] TMP_SRC[95:64] <- SRC[95:64] TMP_SRC[127:96] <- SRC[95:64] IF VL >= 256 TMP_SRC[159:128] <- SRC[159:128] TMP_SRC[191:160] <- SRC[159:128] TMP_SRC[223:192] <- SRC[223:192] TMP_SRC[255:224] <- SRC[223:192] FI; IF VL >= 512 TMP_SRC[287:256] <- SRC[287:256] TMP_SRC[319:288] <- SRC[287:256] TMP_SRC[351:320] <- SRC[351:320] TMP_SRC[383:352] <- SRC[351:320] TMP_SRC[415:384] <- SRC[415:384] TMP_SRC[447:416] <- SRC[415:384] TMP_SRC[479:448] <- SRC[479:448] TMP_SRC[511:480] <- SRC[479:448] FI; FOR j <- 0 TO KL-1 i <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- TMP_SRC[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
VMOVSLDUP (VEX.256 encoded version)
DEST[31:0] <- SRC[31:0] DEST[63:32] <- SRC[31:0] DEST[95:64] <- SRC[95:64] DEST[127:96] <- SRC[95:64] DEST[159:128] <- SRC[159:128] DEST[191:160] <- SRC[159:128] DEST[223:192] <- SRC[223:192] DEST[255:224] <- SRC[223:192] DEST[MAX_VL-1:256] <- 0
VMOVSLDUP (VEX.128 encoded version)
DEST[31:0] <- SRC[31:0] DEST[63:32] <- SRC[31:0] DEST[95:64] <- SRC[95:64] DEST[127:96] <- SRC[95:64] DEST[MAX_VL-1:128] <- 0
MOVSLDUP (128-bit Legacy SSE version)
DEST[31:0] <- SRC[31:0] DEST[63:32] <- SRC[31:0] DEST[95:64] <- SRC[95:64] DEST[127:96] <- SRC[95:64] DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMOVSLDUP __m512 _mm512_moveldup_ps(__m512 a); VMOVSLDUP __m512 _mm512_mask_moveldup_ps(__m512 s, __mmask16 k, __m512 a); VMOVSLDUP __m512 _mm512_maskz_moveldup_ps(__mmask16 k, __m512 a); VMOVSLDUP __m256 _mm256_mask_moveldup_ps(__m256 s, __mmask8 k, __m256 a); VMOVSLDUP __m256 _mm256_maskz_moveldup_ps(__mmask8 k, __m256 a); VMOVSLDUP __m128 _mm_mask_moveldup_ps(__m128 s, __mmask8 k, __m128 a); VMOVSLDUP __m128 _mm_maskz_moveldup_ps(__mmask8 k, __m128 a); VMOVSLDUP __m256 _mm256_moveldup_ps(__m256 a); VMOVSLDUP __m128 _mm_moveldup_ps(__m128 a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4;
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
댓글을 불러오는 중입니다..