모두의 코드
PMINUB, PMINUWs (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 544 번 읽혔습니다.

PMINUB, PMINUW

Minimum of Packed Unsigned Integers

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

RM

V/V

SSE

RM

V/V

SSE2

RM

V/V

SSE4_1

RVM

V/V

AVX

RVM

V/V

AVX

RVM

V/V

AVX2

RVM

V/V

AVX2

FVM

V/V

AVX512VLAVX512BW

FVM

V/V

AVX512VLAVX512BW

FVM

V/V

AVX512BW

FVM

V/V

AVX512VLAVX512BW

FVM

V/V

AVX512VLAVX512BW

FVM

V/V

AVX512BW

  1. See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FVM

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Performs a SIMD compare of the packed unsigned byte or word integers in the second source operand and the first source operand and returns the minimum value for each pair of integers to the destination operand.

Legacy SSE version PMINUB: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand can be an MMX technology register.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination register are zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is conditionally updated based on writemask k1.

Operation

PMINUB (for 64-bit operands)

    IF DEST[7:0] < SRC[17:0] THEN
          DEST[7:0] <- DEST[7:0];
    ELSE
          DEST[7:0] <- SRC[7:0]; FI;
    (* Repeat operation for 2nd through 7th bytes in source and destination operands *)
    IF DEST[63:56] < SRC[63:56] THEN
          DEST[63:56] <- DEST[63:56];
    ELSE
          DEST[63:56] <- SRC[63:56]; FI;

PMINUB instruction for 128-bit operands:

    IF DEST[7:0] < SRC[7:0] THEN
          DEST[7:0] <-  DEST[7:0];
    ELSE
          DEST[15:0] <-  SRC[7:0]; FI;
    (* Repeat operation for 2nd through 15th bytes in source and destination operands *)
    IF DEST[127:120] < SRC[127:120] THEN
          DEST[127:120] <-  DEST[127:120];
    ELSE
          DEST[127:120] <-  SRC[127:120]; FI;
DEST[MAX_VL-1:128] (Unmodified)

VPMINUB (VEX.128 encoded version)

    IF SRC1[7:0] < SRC2[7:0] THEN
          DEST[7:0] <-  SRC1[7:0];
    ELSE
          DEST[7:0] <-  SRC2[7:0]; FI;
    (* Repeat operation for 2nd through 15th bytes in source and destination operands *)
    IF SRC1[127:120] < SRC2[127:120] THEN
          DEST[127:120] <-  SRC1[127:120];
    ELSE
          DEST[127:120] <-  SRC2[127:120]; FI;
DEST[MAX_VL-1:128] <-  0
VPMINUB (VEX.256 encoded version)
    IF SRC1[7:0] < SRC2[7:0] THEN
          DEST[7:0] <-  SRC1[7:0];
    ELSE
          DEST[15:0] <-  SRC2[7:0]; FI;
    (* Repeat operation for 2nd through 31st bytes in source and destination operands *)
    IF SRC1[255:248] < SRC2[255:248] THEN
          DEST[255:248] <-  SRC1[255:248];
    ELSE
          DEST[255:248] <-  SRC2[255:248]; FI;
DEST[MAX_VL-1:256] <-  0

VPMINUB (EVEX encoded versions)

(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j <-  0 TO KL-1
    i <-  j * 8
    IF k1[j] OR *no writemask* THEN
          IF SRC1[i+7:i] < SRC2[i+7:i] 
                THEN DEST[i+7:i] <-  SRC1[i+7:i];
                ELSE DEST[i+7:i] <-  SRC2[i+7:i]; 
          FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+7:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+7:i] <-  0
                FI
    FI;
ENDFOR;
DEST[MAX_VL-1:VL] <-  0

PMINUW instruction for 128-bit operands:

    IF DEST[15:0] < SRC[15:0] THEN
          DEST[15:0] <-  DEST[15:0];
    ELSE
          DEST[15:0] <-  SRC[15:0]; FI;
    (* Repeat operation for 2nd through 7th words in source and destination operands *)
    IF DEST[127:112] < SRC[127:112] THEN
          DEST[127:112] <-  DEST[127:112];
    ELSE
          DEST[127:112] <-  SRC[127:112]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMINUW (VEX.128 encoded version)
    IF SRC1[15:0] < SRC2[15:0] THEN
          DEST[15:0] <-  SRC1[15:0];
    ELSE
          DEST[15:0] <-  SRC2[15:0]; FI;
    (* Repeat operation for 2nd through 7th words in source and destination operands *)
    IF SRC1[127:112] < SRC2[127:112] THEN
          DEST[127:112] <-  SRC1[127:112];
    ELSE
          DEST[127:112] <-  SRC2[127:112]; FI;
DEST[MAX_VL-1:128] <-  0

VPMINUW (VEX.256 encoded version)

    IF SRC1[15:0] < SRC2[15:0] THEN
          DEST[15:0] <-  SRC1[15:0];
    ELSE
          DEST[15:0] <-  SRC2[15:0]; FI;
    (* Repeat operation for 2nd through 15th words in source and destination operands *)
    IF SRC1[255:240] < SRC2[255:240] THEN
          DEST[255:240] <-  SRC1[255:240];
    ELSE
          DEST[255:240] <-  SRC2[255:240]; FI;
DEST[MAX_VL-1:256] <-  0

VPMINUW (EVEX encoded versions)

(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j <-  0 TO KL-1
    i <-  j * 16
    IF k1[j] OR *no writemask* THEN
          IF SRC1[i+15:i] < SRC2[i+15:i] 
                THEN DEST[i+15:i] <-  SRC1[i+15:i];
                ELSE DEST[i+15:i] <-  SRC2[i+15:i]; 
          FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+15:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+15:i] <-  0
                FI
    FI;
ENDFOR;
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalent

VPMINUB __m512i _mm512_min_epu8(__m512i a, __m512i b);
VPMINUB __m512i _mm512_mask_min_epu8(__m512i s, __mmask64 k, __m512i a,
                                     __m512i b);
VPMINUB __m512i _mm512_maskz_min_epu8(__mmask64 k, __m512i a, __m512i b);
VPMINUW __m512i _mm512_min_epu16(__m512i a, __m512i b);
VPMINUW __m512i _mm512_mask_min_epu16(__m512i s, __mmask32 k, __m512i a,
                                      __m512i b);
VPMINUW __m512i _mm512_maskz_min_epu16(__mmask32 k, __m512i a, __m512i b);
VPMINUB __m256i _mm256_mask_min_epu8(__m256i s, __mmask32 k, __m256i a,
                                     __m256i b);
VPMINUB __m256i _mm256_maskz_min_epu8(__mmask32 k, __m256i a, __m256i b);
VPMINUW __m256i _mm256_mask_min_epu16(__m256i s, __mmask16 k, __m256i a,
                                      __m256i b);
VPMINUW __m256i _mm256_maskz_min_epu16(__mmask16 k, __m256i a, __m256i b);
VPMINUB __m128i _mm_mask_min_epu8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPMINUB __m128i _mm_maskz_min_epu8(__mmask16 k, __m128i a, __m128i b);
VPMINUW __m128i _mm_mask_min_epu16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINUW __m128i _mm_maskz_min_epu16(__mmask8 k, __m128i a, __m128i b);
(V) PMINUB __m128i _mm_min_epu8(__m128i a, __m128i b)(V) PMINUW __m128i
    _mm_min_epu16(__m128i a, __m128i b);
VPMINUB __m256i _mm256_min_epu8(__m256i a, __m256i b) VPMINUW __m256i
    _mm256_min_epu16(__m256i a, __m256i b);
PMINUB : __m64 _m_min_pu8(__m64 a, __m64 b)

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded instruction, see Exceptions Type E4.nb.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..