모두의 코드
PSHUFD (Intel x86/64 assembly instruction)
PSHUFD
Shuffle Packed Doublewords
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op/ | 64/32 bit | CPUID | Description |
---|---|---|---|---|
| RMI | V/V | SSE2 | Shuffle the doublewords in xmm2/m128 based on the encoding in imm8 and store the result in xmm1. |
| RMI | V/V | AVX | Shuffle the doublewords in xmm2/m128 based on the encoding in imm8 and store the result in xmm1. |
| RMI | V/V | AVX2 | Shuffle the doublewords in ymm2/m256 based on the encoding in imm8 and store the result in ymm1. |
| FV | V/V | AVX512VL | Shuffle the doublewords in xmm2/m128/m32bcst based on the encoding in imm8 and store the result in xmm1 using writemask k1. |
| FV | V/V | AVX512VL | Shuffle the doublewords in ymm2/m256/m32bcst based on the encoding in imm8 and store the result in ymm1 using writemask k1. |
| FV | V/V | AVX512F | Shuffle the doublewords in zmm2/m512/m32bcst based on the encoding in imm8 and store the result in zmm1 using writemask k1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RMI | ModRM:reg (w) | ModRM:r/m (r) | imm8 | NA |
FV | ModRM:reg (w) | ModRM:r/m (r) | Imm8 | NA |
Description
Copies doublewords from source operand (second operand) and inserts them in the destination operand (first operand) at the locations selected with the order operand (third operand). Figure 4-16 shows the operation of the 256-bit VPSHUFD instruction and the encoding of the order operand. Each 2-bit field in the order operand selects the contents of one doubleword location within a 128-bit lane and copy to the target element in the destination operand. For example, bits 0 and 1 of the order operand targets the first doubleword element in the low and high 128-bit lane of the destination operand for 256-bit VPSHUFD. The encoded value of bits 1:0 of the order operand (see the field encoding in Figure 4-16) determines which doubleword element (from the respective 128-bit lane) of the source operand will be copied to doubleword 0 of the destination operand.
For 128-bit operation, only the low 128-bit lane are operative. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction permits a doubleword in the source operand to be copied to more than one doubleword location in the destination operand.
The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction permits a doubleword in the source operand to be copied to more than one doubleword location in the destination operand.
In 64-bit mode and not encoded in VEX/EVEX, using REX.R permits this instruction to access XMM8-XMM15.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The source operand can be an XMM register or a 128-bit memory location. The destina-tion operand is an XMM register. Bits (MAX_VL-1:128) of the corresponding ZMM register are zeroed.
VEX.256 encoded version: The source operand can be an YMM register or a 256-bit memory location. The destina-tion operand is an YMM register. Bits (MAX_VL-1:256) of the corresponding ZMM register are zeroed. Bits (255-1:128) of the destination stores the shuffled results of the upper 16 bytes of the source operand using the imme-diate byte as the order operand.
EVEX encoded version: The source operand can be an ZMM/YMM/XMM register, a 512/256/128-bit memory loca-tion, or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register updated according to the writemask.
Each 128-bit lane of the destination stores the shuffled results of the respective lane of the source operand using the immediate byte as the order operand.
Note: EVEX.vvvv and VEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Operation
PSHUFD (128-bit Legacy SSE version)
DEST[31:0] <- (SRC >> (ORDER[1:0] * 32))[31:0]; DEST[63:32] <- (SRC >> (ORDER[3:2] * 32))[31:0]; DEST[95:64] <- (SRC >> (ORDER[5:4] * 32))[31:0]; DEST[127:96] <- (SRC >> (ORDER[7:6] * 32))[31:0]; DEST[VLMAX-1:128] (Unmodified)
VPSHUFD (VEX.128 encoded version)
DEST[31:0] <- (SRC >> (ORDER[1:0] * 32))[31:0]; DEST[63:32] <- (SRC >> (ORDER[3:2] * 32))[31:0]; DEST[95:64] <- (SRC >> (ORDER[5:4] * 32))[31:0]; DEST[127:96] <- (SRC >> (ORDER[7:6] * 32))[31:0]; DEST[VLMAX-1:128] <- 0
VPSHUFD (VEX.256 encoded version)
DEST[31:0] <- (SRC[127:0] >> (ORDER[1:0] * 32))[31:0]; DEST[63:32] <- (SRC[127:0] >> (ORDER[3:2] * 32))[31:0]; DEST[95:64] <- (SRC[127:0] >> (ORDER[5:4] * 32))[31:0]; DEST[127:96] <- (SRC[127:0] >> (ORDER[7:6] * 32))[31:0]; DEST[159:128] <- (SRC[255:128] >> (ORDER[1:0] * 32))[31:0]; DEST[191:160] <- (SRC[255:128] >> (ORDER[3:2] * 32))[31:0]; DEST[223:192] <- (SRC[255:128] >> (ORDER[5:4] * 32))[31:0]; DEST[255:224] <- (SRC[255:128] >> (ORDER[7:6] * 32))[31:0]; DEST[VLMAX-1:256] <- 0
VPSHUFD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j <- 0 TO KL-1 i <- j * 32 IF (EVEX.b = 1) AND (SRC *is memory*) THEN TMP_SRC[i+31:i] <- SRC[31:0] ELSE TMP_SRC[i+31:i] <- SRC[i+31:i] FI; ENDFOR; IF VL >= 128 TMP_DEST[31:0] <- (TMP_SRC[127:0] >> (ORDER[1:0] * 32))[31:0]; TMP_DEST[63:32] <- (TMP_SRC[127:0] >> (ORDER[3:2] * 32))[31:0]; TMP_DEST[95:64] <- (TMP_SRC[127:0] >> (ORDER[5:4] * 32))[31:0]; TMP_DEST[127:96] <- (TMP_SRC[127:0] >> (ORDER[7:6] * 32))[31:0]; FI; IF VL >= 256 TMP_DEST[159:128] <- (TMP_SRC[255:128] >> (ORDER[1:0] * 32))[31:0]; TMP_DEST[191:160] <- (TMP_SRC[255:128] >> (ORDER[3:2] * 32))[31:0]; TMP_DEST[223:192] <- (TMP_SRC[255:128] >> (ORDER[5:4] * 32))[31:0]; TMP_DEST[255:224] <- (TMP_SRC[255:128] >> (ORDER[7:6] * 32))[31:0]; FI; IF VL >= 512 TMP_DEST[287:256] <- (TMP_SRC[383:256] >> (ORDER[1:0] * 32))[31:0]; TMP_DEST[319:288] <- (TMP_SRC[383:256] >> (ORDER[3:2] * 32))[31:0]; TMP_DEST[351:320] <- (TMP_SRC[383:256] >> (ORDER[5:4] * 32))[31:0]; TMP_DEST[383:352] <- (TMP_SRC[383:256] >> (ORDER[7:6] * 32))[31:0]; TMP_DEST[415:384] <- (TMP_SRC[511:384] >> (ORDER[1:0] * 32))[31:0]; TMP_DEST[447:416] <- (TMP_SRC[511:384] >> (ORDER[3:2] * 32))[31:0]; TMP_DEST[479:448] <- (TMP_SRC[511:384] >> (ORDER[5:4] * 32))[31:0]; TMP_DEST[511:480] <- (TMP_SRC[511:384] >> (ORDER[7:6] * 32))[31:0]; FI; FOR j <- 0 TO KL-1 i <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- TMP_DEST[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
Intel C/C++ Compiler Intrinsic Equivalent
VPSHUFD __m512i _mm512_shuffle_epi32(__m512i a, int n); VPSHUFD __m512i _mm512_mask_shuffle_epi32(__m512i s, __mmask16 k, __m512i a, int n); VPSHUFD __m512i _mm512_maskz_shuffle_epi32(__mmask16 k, __m512i a, int n); VPSHUFD __m256i _mm256_mask_shuffle_epi32(__m256i s, __mmask8 k, __m256i a, int n); VPSHUFD __m256i _mm256_maskz_shuffle_epi32(__mmask8 k, __m256i a, int n); VPSHUFD __m128i _mm_mask_shuffle_epi32(__m128i s, __mmask8 k, __m128i a, int n); VPSHUFD __m128i _mm_maskz_shuffle_epi32(__mmask8 k, __m128i a, int n); (V) PSHUFD : __m128i _mm_shuffle_epi32(__m128i a, int n) VPSHUFD : __m256i _mm256_shuffle_epi32(__m256i a, const int n)
Flags Affected
None.
SIMD Floating-Point Exceptions
None.
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.
#UD If VEX.vvvv -> 1111B or EVEX.vvvv -> 1111B.
댓글을 불러오는 중입니다..