모두의 코드
PSHUFHW (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 754 번 읽혔습니다.

PSHUFHW

Shuffle Packed High Words

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 70 /r ib
PSHUFHW xmm1 xmm2/m128 imm8

RMI

V/V

SSE2

Shuffle the high words in xmm2/m128 based on the encoding in imm8 and store the result in xmm1.

VEX.128.F3.0F.WIG 70 /r ib
VPSHUFHW xmm1 xmm2/m128 imm8

RMI

V/V

AVX

Shuffle the high words in xmm2/m128 based on the encoding in imm8 and store the result in xmm1.

VEX.256.F3.0F.WIG 70 /r ib
VPSHUFHW ymm1 ymm2/m256 imm8

RMI

V/V

AVX2

Shuffle the high words in ymm2/m256 based on the encoding in imm8 and store the result in ymm1.

EVEX.128.F3.0F.WIG 70 /r ib
VPSHUFHW xmm1 {k1}{z} xmm2/m128 imm8

FVM

V/V

AVX512VL
AVX512BW

Shuffle the high words in xmm2/m128 based on the encoding in imm8 and store the result in xmm1 under write mask k1.

EVEX.256.F3.0F.WIG 70 /r ib
VPSHUFHW ymm1 {k1}{z} ymm2/m256 imm8

FVM

V/V

AVX512VL
AVX512BW

Shuffle the high words in ymm2/m256 based on the encoding in imm8 and store the result in ymm1 under write mask k1.

EVEX.512.F3.0F.WIG 70 /r ib
VPSHUFHW zmm1 {k1}{z} zmm2/m512 imm8

FVM

V/V

AVX512BW

Shuffle the high words in zmm2/m512 based on the encoding in imm8 and store the result in zmm1 under write mask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RMI

ModRM:reg (w)

ModRM:r/m (r)

imm8

NA

FVM

ModRM:reg (w)

ModRM:r/m (r)

Imm8

NA

Description

Copies words from the high quadword of a 128-bit lane of the source operand and inserts them in the high quad-word of the destination operand at word locations (of the respective lane) selected with the immediate operand. This 256-bit operation is similar to the in-lane operation used by the 256-bit VPSHUFD instruction, which is illus-trated in Figure 4-16. For 128-bit operation, only the low 128-bit lane is operative. Each 2-bit field in the immediate operand selects the contents of one word location in the high quadword of the destination operand. The binary encodings of the immediate operand fields select words (0, 1, 2 or 3, 4) from the high quadword of the source operand to be copied to the destination operand. The low quadword of the source operand is copied to the low quadword of the destination operand, for each 128-bit lane.

Note that this instruction permits a word in the high quadword of the source operand to be copied to more than one word location in the high quadword of the destination operand.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD.

VEX.256 encoded version: The destination operand is an YMM register. The source operand can be an YMM register or a 256-bit memory location.

EVEX encoded version: The destination operand is a ZMM/YMM/XMM registers. The source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is updated according to the writemask.

Note: In VEX encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

PSHUFHW (128-bit Legacy SSE version)

DEST[63:0] <-  SRC[63:0]
DEST[79:64] <-  (SRC >> (imm[1:0] *16))[79:64]
DEST[95:80] <-  (SRC >> (imm[3:2] * 16))[79:64]
DEST[111:96] <-  (SRC >> (imm[5:4] * 16))[79:64]
DEST[127:112] <-  (SRC >> (imm[7:6] * 16))[79:64]
DEST[VLMAX-1:128] (Unmodified)

VPSHUFHW (VEX.128 encoded version)

DEST[63:0] <-  SRC1[63:0]
DEST[79:64] <-  (SRC1 >> (imm[1:0] *16))[79:64]
DEST[95:80] <-  (SRC1 >> (imm[3:2] * 16))[79:64]
DEST[111:96] <-  (SRC1 >> (imm[5:4] * 16))[79:64]
DEST[127:112] <-  (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[VLMAX-1:128] <-  0

VPSHUFHW (VEX.256 encoded version)

DEST[63:0] <-  SRC1[63:0]
DEST[79:64] <-  (SRC1 >> (imm[1:0] *16))[79:64]
DEST[95:80] <-  (SRC1 >> (imm[3:2] * 16))[79:64]
DEST[111:96] <-  (SRC1 >> (imm[5:4] * 16))[79:64]
DEST[127:112] <-  (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[191:128] <-  SRC1[191:128]
DEST[207192] <-  (SRC1 >> (imm[1:0] *16))[207:192]
DEST[223:208] <-  (SRC1 >> (imm[3:2] * 16))[207:192]
DEST[239:224] <-  (SRC1 >> (imm[5:4] * 16))[207:192]
DEST[255:240] <-  (SRC1 >> (imm[7:6] * 16))[207:192]
DEST[VLMAX-1:256] <-  0

VPSHUFHW (EVEX encoded versions)

(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL >= 128
    TMP_DEST[63:0] <-  SRC1[63:0]
    TMP_DEST[79:64] <-  (SRC1 >> (imm[1:0] *16))[79:64]
    TMP_DEST[95:80] <-  (SRC1 >> (imm[3:2] * 16))[79:64]
    TMP_DEST[111:96] <-  (SRC1 >> (imm[5:4] * 16))[79:64]
    TMP_DEST[127:112] <-  (SRC1 >> (imm[7:6] * 16))[79:64]
FI;
IF VL >= 256
    TMP_DEST[191:128] <-  SRC1[191:128]
    TMP_DEST[207:192] <-  (SRC1 >> (imm[1:0] *16))[207:192]
    TMP_DEST[223:208] <-  (SRC1 >> (imm[3:2] * 16))[207:192]
    TMP_DEST[239:224] <-  (SRC1 >> (imm[5:4] * 16))[207:192]
    TMP_DEST[255:240] <-  (SRC1 >> (imm[7:6] * 16))[207:192]
FI;
IF VL >= 512
    TMP_DEST[319:256] <-  SRC1[319:256]
    TMP_DEST[335:320] <-  (SRC1 >> (imm[1:0] *16))[335:320]
TMP_DEST[351:336] <-  (SRC1 >> (imm[3:2] * 16))[335:320]
    TMP_DEST[367:352] <-  (SRC1 >> (imm[5:4] * 16))[335:320]
    TMP_DEST[383:368] <-  (SRC1 >> (imm[7:6] * 16))[335:320]
    TMP_DEST[447:384] <-  SRC1[447:384]
    TMP_DEST[463:448] <-  (SRC1 >> (imm[1:0] *16))[463:448]
    TMP_DEST[479:464] <-  (SRC1 >> (imm[3:2] * 16))[463:448]
    TMP_DEST[495:480] <-  (SRC1 >> (imm[5:4] * 16))[463:448]
    TMP_DEST[511:496] <-  (SRC1 >> (imm[7:6] * 16))[463:448]
FI;
FOR j <-  0 TO KL-1
    i <-  j * 16
    IF k1[j] OR *no writemask*
          THEN DEST[i+15:i] <-  TMP_DEST[i+15:i];
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+15:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking
                            DEST[i+15:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0 

Intel C/C++ Compiler Intrinsic Equivalent

VPSHUFHW __m512i _mm512_shufflehi_epi16(__m512i a, int n);
VPSHUFHW __m512i _mm512_mask_shufflehi_epi16(__m512i s, __mmask16 k, __m512i a,
                                             int n);
VPSHUFHW __m512i _mm512_maskz_shufflehi_epi16(__mmask16 k, __m512i a, int n);
VPSHUFHW __m256i _mm256_mask_shufflehi_epi16(__m256i s, __mmask8 k, __m256i a,
                                             int n);
VPSHUFHW __m256i _mm256_maskz_shufflehi_epi16(__mmask8 k, __m256i a, int n);
VPSHUFHW __m128i _mm_mask_shufflehi_epi16(__m128i s, __mmask8 k, __m128i a,
                                          int n);
VPSHUFHW __m128i _mm_maskz_shufflehi_epi16(__mmask8 k, __m128i a, int n);
(V) PSHUFHW : __m128i _mm_shufflehi_epi16(__m128i a, int n) VPSHUFHW
    : __m256i _mm256_shufflehi_epi16(__m256i a, const int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4;

EVEX-encoded instruction, see Exceptions Type E4NF.nb

#UD If VEX.vvvv != 1111B, or EVEX.vvvv != 1111B.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..