모두의 코드
VFNMADD132SD, VFNMADD213SD, VFNMADD231SDs (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 466 번 읽혔습니다.

VFNMADD132SD, VFNMADD213SD, VFNMADD231SD

Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.LIG.66.0F38.W1 9D /r
VFNMADD132SD xmm1 xmm2 xmm3/m64

RVM

V/V

FMA

Multiply scalar double-precision floating-point value from xmm1 and xmm3/mem, negate the multiplication result and add to xmm2 and put result in xmm1.

VEX.DDS.LIG.66.0F38.W1 AD /r
VFNMADD213SD xmm1 xmm2 xmm3/m64

RVM

V/V

FMA

Multiply scalar double-precision floating-point value from xmm1 and xmm2, negate the multiplication result and add to xmm3/mem and put result in xmm1.

VEX.DDS.LIG.66.0F38.W1 BD /r
VFNMADD231SD xmm1 xmm2 xmm3/m64

RVM

V/V

FMA

Multiply scalar double-precision floating-point value from xmm2 and xmm3/mem, negate the multiplication result and add to xmm1 and put result in xmm1.

EVEX.DDS.LIG.66.0F38.W1 9D /r
VFNMADD132SD xmm1 {k1}{z} xmm2 xmm3/m64{er}

T1S

V/V

AVX512F

Multiply scalar double-precision floating-point value from xmm1 and xmm3/m64, negate the multiplication result and add to xmm2 and put result in xmm1.

EVEX.DDS.LIG.66.0F38.W1 AD /r
VFNMADD213SD xmm1 {k1}{z} xmm2 xmm3/m64{er}

T1S

V/V

AVX512F

Multiply scalar double-precision floating-point value from xmm1 and xmm2, negate the multiplication result and add to xmm3/m64 and put result in xmm1.

EVEX.DDS.LIG.66.0F38.W1 BD /r
VFNMADD231SD xmm1 {k1}{z} xmm2 xmm3/m64{er}

T1S

V/V

AVX512F

Multiply scalar double-precision floating-point value from xmm2 and xmm3/m64, negate the multiplication result and add to xmm1 and put result in xmm1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RVM

ModRM:reg (r, w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

T1S

ModRM:reg (r, w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

VFNMADD132SD: Multiplies the low packed double-precision floating-point value from the first source operand to the low packed double-precision floating-point value in the third source operand, adds the negated infinite preci-sion intermediate result to the low packed double-precision floating-point values in the second source operand, performs rounding and stores the resulting packed double-precision floating-point value to the destination operand (first source operand).

VFNMADD213SD: Multiplies the low packed double-precision floating-point value from the second source operand to the low packed double-precision floating-point value in the first source operand, adds the negated infinite preci-sion intermediate result to the low packed double-precision floating-point value in the third source operand, performs rounding and stores the resulting packed double-precision floating-point value to the destination operand (first source operand).

VFNMADD231SD: Multiplies the low packed double-precision floating-point value from the second source to the low packed double-precision floating-point value in the third source operand, adds the negated infinite precision inter-mediate result to the low packed double-precision floating-point value in the first source operand, performs rounding and stores the resulting packed double-precision floating-point value to the destination operand (first source operand).

VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in regfield. The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rmfield. Bits 127:64 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.

EVEX encoded version: The low quadword element of the destination is updated according to the writemask.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction column.

Operation

VFNMADD132SD DEST, SRC2, SRC3 (EVEX encoded version)

IF (EVEX.b = 1) and SRC3 *is a register*
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
    THEN DEST[63:0] <-  RoundFPControl(-(DEST[63:0]*SRC3[63:0]) + SRC2[63:0])
    ELSE 
          IF *merging-masking* ; merging-masking
                THEN *DEST[63:0] remains unchanged*
                ELSE  ; zeroing-masking
                      THEN DEST[63:0] <-  0
          FI;
FI;
DEST[127:64] <-  DEST[127:64]
DEST[MAX_VL-1:128] <-  0

VFNMADD213SD DEST, SRC2, SRC3 (EVEX encoded version)

IF (EVEX.b = 1) and SRC3 *is a register*
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
    THEN DEST[63:0] <-  RoundFPControl(-(SRC2[63:0]*DEST[63:0]) + SRC3[63:0])
    ELSE 
          IF *merging-masking* ; merging-masking
                THEN *DEST[63:0] remains unchanged*
                ELSE  ; zeroing-masking
                      THEN DEST[63:0] <-  0
          FI;
FI;
DEST[127:64] <-  DEST[127:64]
DEST[MAX_VL-1:128] <-  0

VFNMADD231SD DEST, SRC2, SRC3 (EVEX encoded version)

IF (EVEX.b = 1) and SRC3 *is a register*
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
    THEN DEST[63:0] <-  RoundFPControl(-(SRC2[63:0]*SRC3[63:0]) + DEST[63:0])
    ELSE 
          IF *merging-masking* ; merging-masking
                THEN *DEST[63:0] remains unchanged*
                ELSE  ; zeroing-masking
                      THEN DEST[63:0] <-  0
          FI;
FI;
DEST[127:64] <-  DEST[127:64]
DEST[MAX_VL-1:128] <-  0

VFNMADD132SD DEST, SRC2, SRC3 (VEX encoded version)

DEST[63:0] <- RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) + SRC2[63:0])
DEST[127:64] <- DEST[127:64]
DEST[MAX_VL-1:128] <- 0

VFNMADD213SD DEST, SRC2, SRC3 (VEX encoded version)

DEST[63:0] <- RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) + SRC3[63:0])
DEST[127:64] <- DEST[127:64]
DEST[MAX_VL-1:128] <- 0

VFNMADD231SD DEST, SRC2, SRC3 (VEX encoded version)

DEST[63:0] <- RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) + DEST[63:0])
DEST[127:64] <- DEST[127:64]
DEST[MAX_VL-1:128] <- 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADDxxxSD __m128d _mm_fnmadd_round_sd(__m128d a, __m128d b, __m128d c,
                                         int r);
VFNMADDxxxSD __m128d _mm_mask_fnmadd_sd(__m128d a, __mmask8 k, __m128d b,
                                        __m128d c);
VFNMADDxxxSD __m128d _mm_maskz_fnmadd_sd(__mmask8 k, __m128d a, __m128d b,
                                         __m128d c);
VFNMADDxxxSD __m128d _mm_mask3_fnmadd_sd(__m128d a, __m128d b, __m128d c,
                                         __mmask8 k);
VFNMADDxxxSD __m128d _mm_mask_fnmadd_round_sd(__m128d a, __mmask8 k, __m128d b,
                                              __m128d c, int r);
VFNMADDxxxSD __m128d _mm_maskz_fnmadd_round_sd(__mmask8 k, __m128d a, __m128d b,
                                               __m128d c, int r);
VFNMADDxxxSD __m128d _mm_mask3_fnmadd_round_sd(__m128d a, __m128d b, __m128d c,
                                               __mmask8 k, int r);
VFNMADDxxxSD __m128d _mm_fnmadd_sd(__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Exceptions Type 3.

EVEX-encoded instructions, see Exceptions Type E3.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..