모두의 코드
VPERMPS (Intel x86/64 assembly instruction)
VPERMPS
Permute Single-Precision Floating-Point Elements
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
| RVM | V/V | AVX2 | Permute single-precision floating-point elements in ymm3/m256 using indices in ymm2 and store the result in ymm1. |
| FV | V/V | AVX512VL | Permute single-precision floating-point elements in ymm3/m256/m32bcst using indexes in ymm2 and store the result in ymm1 subject to write mask k1. |
| FV | V/V | AVX512F | Permute single-precision floating-point values in zmm3/m512/m32bcst using indices in zmm2 and store the result in zmm1 subject to write mask k1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RVM | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
FV | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | NA |
Description
Copies doubleword elements of single-precision floating-point values from the second source operand (the third operand) to the destination operand (the first operand) according to the indices in the first source operand (the second operand). Note that this instruction permits a doubleword in the source operand to be copied to more than one location in the destination operand.
VEX.256 versions: The first and second operands are YMM registers, the third operand can be a YMM register or memory location. Bits (MAXVL-1:256) of the corresponding destination register are zeroed.
EVEX encoded version: The first and second operands are ZMM registers, the third operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32-bit memory location. The elements in the destination are updated using the writemask k1.
If VPERMPS is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an #UD exception.
Operation
VPERMPS (EVEX forms)
(KL, VL) (8, 256),= (16, 512) FOR j <- 0 TO KL-1 i <- j * 64 IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN TMP_SRC2[i+31:i] <- SRC2[31:0]; ELSE TMP_SRC2[i+31:i] <- SRC2[i+31:i]; FI; ENDFOR; IF VL = 256 TMP_DEST[31:0] <- (TMP_SRC2[255:0] >> (SRC1[2:0] * 32))[31:0]; TMP_DEST[63:32] <- (TMP_SRC2[255:0] >> (SRC1[34:32] * 32))[31:0]; TMP_DEST[95:64] <- (TMP_SRC2[255:0] >> (SRC1[66:64] * 32))[31:0]; TMP_DEST[127:96] <- (TMP_SRC2[255:0] >> (SRC1[98:96] * 32))[31:0]; TMP_DEST[159:128] <- (TMP_SRC2[255:0] >> (SRC1[130:128] * 32))[31:0]; TMP_DEST[191:160] <- (TMP_SRC2[255:0] >> (SRC1[162:160] * 32))[31:0]; TMP_DEST[223:192] <- (TMP_SRC2[255:0] >> (SRC1[193:192] * 32))[31:0]; TMP_DEST[255:224] <- (TMP_SRC2[255:0] >> (SRC1[226:224] * 32))[31:0]; FI; IF VL = 512 TMP_DEST[31:0] <- (TMP_SRC2[511:0] >> (SRC1[3:0] * 32))[31:0]; TMP_DEST[63:32] <- (TMP_SRC2[511:0] >> (SRC1[35:32] * 32))[31:0]; TMP_DEST[95:64] <- (TMP_SRC2[511:0] >> (SRC1[67:64] * 32))[31:0]; TMP_DEST[127:96] <- (TMP_SRC2[511:0] >> (SRC1[99:96] * 32))[31:0]; TMP_DEST[159:128] <- (TMP_SRC2[511:0] >> (SRC1[131:128] * 32))[31:0]; TMP_DEST[191:160] <- (TMP_SRC2[511:0] >> (SRC1[163:160] * 32))[31:0]; TMP_DEST[223:192] <- (TMP_SRC2[511:0] >> (SRC1[195:192] * 32))[31:0]; TMP_DEST[255:224] <- (TMP_SRC2[511:0] >> (SRC1[227:224] * 32))[31:0]; TMP_DEST[287:256] <- (TMP_SRC2[511:0] >> (SRC1[259:256] * 32))[31:0]; TMP_DEST[319:288] <- (TMP_SRC2[511:0] >> (SRC1[291:288] * 32))[31:0]; TMP_DEST[351:320] <- (TMP_SRC2[511:0] >> (SRC1[323:320] * 32))[31:0]; TMP_DEST[383:352] <- (TMP_SRC2[511:0] >> (SRC1[355:352] * 32))[31:0]; TMP_DEST[415:384] <- (TMP_SRC2[511:0] >> (SRC1[387:384] * 32))[31:0]; TMP_DEST[447:416] <- (TMP_SRC2[511:0] >> (SRC1[419:416] * 32))[31:0]; TMP_DEST[479:448] <- (TMP_SRC2[511:0] >> (SRC1[451:448] * 32))[31:0]; TMP_DEST[511:480] <- (TMP_SRC2[511:0] >> (SRC1[483:480] * 32))[31:0]; FI; FOR j <- 0 TO KL-1 i <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- TMP_DEST[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] <- 0 ;zeroing-masking FI; FI; ENDFOR DEST[MAX_VL-1:VL] <-!= 0
VPERMPS (VEX.256 encoded version)
DEST[31:0] <- (SRC2[255:0] >> (SRC1[2:0] * 32))[31:0]; DEST[63:32] <- (SRC2[255:0] >> (SRC1[34:32] * 32))[31:0]; DEST[95:64] <- (SRC2[255:0] >> (SRC1[66:64] * 32))[31:0]; DEST[127:96] <- (SRC2[255:0] >> (SRC1[98:96] * 32))[31:0]; DEST[159:128] <- (SRC2[255:0] >> (SRC1[130:128] * 32))[31:0]; DEST[191:160] <- (SRC2[255:0] >> (SRC1[162:160] * 32))[31:0]; DEST[223:192] <- (SRC2[255:0] >> (SRC1[194:192] * 32))[31:0]; DEST[255:224] <- (SRC2[255:0] >> (SRC1[226:224] * 32))[31:0]; DEST[MAX_VL-1:256] <-!= 0
Intel C/C++ Compiler Intrinsic Equivalent
VPERMPS __m512 _mm512_permutexvar_ps(__m512i i, __m512 a); VPERMPS __m512 _mm512_mask_permutexvar_ps(__m512 s, __mmask16 k, __m512i i, __m512 a); VPERMPS __m512 _mm512_maskz_permutexvar_ps(__mmask16 k, __m512i i, __m512 a); VPERMPS __m256 _mm256_permutexvar_ps(__m256 i, __m256 a); VPERMPS __m256 _mm256_mask_permutexvar_ps(__m256 s, __mmask8 k, __m256 i, __m256 a); VPERMPS __m256 _mm256_maskz_permutexvar_ps(__mmask8 k, __m256 i, __m256 a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4; additionally
#UD If VEX.L = 0.
EVEX-encoded instruction, see Exceptions Type E4NF.
댓글을 불러오는 중입니다..