모두의 코드
VPERMQ (Intel x86/64 assembly instruction)
VPERMQ
Qwords Element Permutation
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op / En | 64/32 | CPUID | Description |
---|---|---|---|---|
| RMI | V/V | AVX2 | Permute qwords in ymm2/m256 using indices in imm8 and store the result in ymm1. |
| FV-RM | V/V | AVX512VL | Permute qwords in ymm2/m256/m64bcst using indexes in imm8 and store the result in ymm1. |
| FV-RMI | V/V | AVX512F | Permute qwords in zmm2/m512/m64bcst using indices in imm8 and store the result in zmm1. |
| FV-RVM | V/V | AVX512VL | Permute qwords in ymm3/m256/m64bcst using indexes in ymm2 and store the result in ymm1. |
| FV-RVM | V/V | AVX512F | Permute qwords in zmm3/m512/m64bcst using indices in zmm2 and store the result in zmm1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RMI | ModRM:reg (w) | ModRM:r/m (r) | Imm8 | NA |
FV-RMI | ModRM:reg (w) | ModRM:r/m (r) | Imm8 | NA |
FV-RVM | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | NA |
Description
The imm8 version: Copies quadwords from the source operand (the second operand) to the destination operand (the first operand) according to the indices specified by the immediate operand (the third operand). Each two-bit value in the immediate byte selects a qword element in the source operand.
VEX version: The source operand can be a YMM register or a memory location. Bits (MAXVL-1:256) of the corre-sponding destination register are zeroed.
In EVEX.512 encoded version, The elements in the destination are updated using the writemask k1 and the imm8 bits are reused as control bits for the upper 256-bit half when the control bits are coming from immediate. The source operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit memory location.
Immediate control versions: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
The vector control version: Copies quadwords from the second source operand (the third operand) to the destina-tion operand (the first operand) according to the indices in the first source operand (the second operand). The first 3 bits of each 64 bit element in the index operand selects which quadword in the second source operand to copy. The first and second operands are ZMM registers, the third operand can be a ZMM register, a 512-bit memory loca-tion or a 512-bit vector broadcasted from a 64-bit memory location. The elements in the destination are updated using the writemask k1.
Note that this instruction permits a qword in the source operand to be copied to multiple locations in the destina-tion operand.
If VPERMPQ is encoded with VEX.L= 0 or EVEX.128, an attempt to execute the instruction will cause an #UD excep-tion.
Operation
VPERMQ (EVEX - imm8 control forms)
(KL, VL) = (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 64 IF (EVEX.b = 1) AND (SRC *is memory*) THEN TMP_SRC[i+63:i] <- SRC[63:0]; ELSE TMP_SRC[i+63:i] <- SRC[i+63:i]; FI; ENDFOR; TMP_DEST[63:0] <- (TMP_SRC[255:0] >> (IMM8[1:0] * 64))[63:0]; TMP_DEST[127:64] <- (TMP_SRC[255:0] >> (IMM8[3:2] * 64))[63:0]; TMP_DEST[191:128] <- (TMP_SRC[255:0] >> (IMM8[5:4] * 64))[63:0]; TMP_DEST[255:192] <- (TMP_SRC[255:0] >> (IMM8[7:6] * 64))[63:0]; IF VL >= 512 TMP_DEST[319:256] <- (TMP_SRC[511:256] >> (IMM8[1:0] * 64))[63:0]; TMP_DEST[383:320] <- (TMP_SRC[511:256] >> (IMM8[3:2] * 64))[63:0]; TMP_DEST[447:384] <- (TMP_SRC[511:256] >> (IMM8[5:4] * 64))[63:0]; TMP_DEST[511:448] <- (TMP_SRC[511:256] >> (IMM8[7:6] * 64))[63:0]; FI; FOR j <- 0 TO KL-1 i <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] <- TMP_DEST[i+63:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] <- 0 ;zeroing-masking FI; FI; ENDFOR DEST[MAX_VL-1:VL] <-!= 0
VPERMQ (EVEX - vector control forms)
(KL, VL) = (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 64 IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN TMP_SRC2[i+63:i] <- SRC2[63:0]; ELSE TMP_SRC2[i+63:i] <- SRC2[i+63:i]; FI; ENDFOR; IF VL = 256 TMP_DEST[63:0] <- (TMP_SRC2[255:0] >> (SRC1[1:0] * 64))[63:0]; TMP_DEST[127:64] <- (TMP_SRC2[255:0] >> (SRC1[65:64] * 64))[63:0]; TMP_DEST[191:128] <- (TMP_SRC2[255:0] >> (SRC1[129:128] * 64))[63:0]; TMP_DEST[255:192] <- (TMP_SRC2[255:0] >> (SRC1[193:192] * 64))[63:0]; FI; IF VL = 512 TMP_DEST[63:0] <- (TMP_SRC2[511:0] >> (SRC1[2:0] * 64))[63:0]; TMP_DEST[127:64] <- (TMP_SRC2[511:0] >> (SRC1[66:64] * 64))[63:0]; TMP_DEST[191:128] <- (TMP_SRC2[511:0] >> (SRC1[130:128] * 64))[63:0]; TMP_DEST[255:192] <- (TMP_SRC2[511:0] >> (SRC1[194:192] * 64))[63:0]; TMP_DEST[319:256] <- (TMP_SRC2[511:0] >> (SRC1[258:256] * 64))[63:0]; TMP_DEST[383:320] <- (TMP_SRC2[511:0] >> (SRC1[322:320] * 64))[63:0]; TMP_DEST[447:384] <- (TMP_SRC2[511:0] >> (SRC1[386:384] * 64))[63:0]; TMP_DEST[511:448] <- (TMP_SRC2[511:0] >> (SRC1[450:448] * 64))[63:0]; FI; FOR j <- 0 TO KL-1 i <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] <- TMP_DEST[i+63:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] <- 0 ;zeroing-masking FI; FI; ENDFOR DEST[MAX_VL-1:VL] <-!= 0
VPERMQ (VEX.256 encoded version)
DEST[63:0] <- (SRC[255:0] >> (IMM8[1:0] * 64))[63:0]; DEST[127:64] <- (SRC[255:0] >> (IMM8[3:2] * 64))[63:0]; DEST[191:128] <- (SRC[255:0] >> (IMM8[5:4] * 64))[63:0]; DEST[255:192] <- (SRC[255:0] >> (IMM8[7:6] * 64))[63:0]; DEST[MAX_VL-1:256] <-!= 0
Intel C/C++ Compiler Intrinsic Equivalent
VPERMQ __m512i _mm512_permutex_epi64(__m512i a, int imm); VPERMQ __m512i _mm512_mask_permutex_epi64(__m512i s, __mmask8 k, __m512i a, int imm); VPERMQ __m512i _mm512_maskz_permutex_epi64(__mmask8 k, __m512i a, int imm); VPERMQ __m512i _mm512_permutexvar_epi64(__m512i a, __m512i b); VPERMQ __m512i _mm512_mask_permutexvar_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b); VPERMQ __m512i _mm512_maskz_permutexvar_epi64(__mmask8 k, __m512i a, __m512i b); VPERMQ __m256i _mm256_permutex_epi64(__m256i a, int imm); VPERMQ __m256i _mm256_mask_permutex_epi64(__m256i s, __mmask8 k, __m256i a, int imm); VPERMQ __m256i _mm256_maskz_permutex_epi64(__mmask8 k, __m256i a, int imm); VPERMQ __m256i _mm256_permutexvar_epi64(__m256i a, __m256i b); VPERMQ __m256i _mm256_mask_permutexvar_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b); VPERMQ __m256i _mm256_maskz_permutexvar_epi64(__mmask8 k, __m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4; additionally
#UD If VEX.L = 0.
If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Exceptions Type E4NF.
#UD If encoded with EVEX.128.
If EVEX.vvvv != 1111B and with imm8.
댓글을 불러오는 중입니다..