모두의 코드
VPMOVDB, VPMOVSDB, VPMOVUSDBs (Intel x86/64 assembly instruction)
VPMOVDB, VPMOVSDB, VPMOVUSDB
Down Convert DWord to Byte
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
| QVM | V/V | AVX512VL | Converts 4 packed double-word integers from xmm2 into 4 packed byte integers in xmm1/m32 with truncation under writemask k1. |
| QVM | V/V | AVX512VL | Converts 4 packed signed double-word integers from xmm2 into 4 packed signed byte integers in xmm1/m32 using signed saturation under writemask k1. |
| QVM | V/V | AVX512VL | Converts 4 packed unsigned double-word integers from xmm2 into 4 packed unsigned byte integers in xmm1/m32 using unsigned saturation under writemask k1. |
| QVM | V/V | AVX512VL | Converts 8 packed double-word integers from ymm2 into 8 packed byte integers in xmm1/m64 with truncation under writemask k1. |
| QVM | V/V | AVX512VL | Converts 8 packed signed double-word integers from ymm2 into 8 packed signed byte integers in xmm1/m64 using signed saturation under writemask k1. |
| QVM | V/V | AVX512VL | Converts 8 packed unsigned double-word integers from ymm2 into 8 packed unsigned byte integers in xmm1/m64 using unsigned saturation under writemask k1. |
| QVM | V/V | AVX512F | Converts 16 packed double-word integers from zmm2 into 16 packed byte integers in xmm1/m128 with truncation under writemask k1. |
| QVM | V/V | AVX512F | Converts 16 packed signed double-word integers from zmm2 into 16 packed signed byte integers in xmm1/m128 using signed saturation under writemask k1. |
| QVM | V/V | AVX512F | Converts 16 packed unsigned double-word integers from zmm2 into 16 packed unsigned byte integers in xmm1/m128 using unsigned saturation under writemask k1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
QVM | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
Description
VPMOVDB down converts 32-bit integer elements in the source operand (the second operand) into packed bytes using truncation. VPMOVSDB converts signed 32-bit integers into packed signed bytes using signed saturation. VPMOVUSDB convert unsigned double-word values into unsigned byte values using unsigned saturation.
The source operand is a ZMM/YMM/XMM register. The destination operand is a XMM register or a 128/64/32-bit memory location.
Down-converted byte elements are written to the destination operand (the first operand) from the least-significant byte. Byte elements of the destination operand are updated according to the writemask. Bits (MAX_VL-1:128/64/32) of the register destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VPMOVDB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j <- 0 TO KL-1 i <- j * 8 m <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+7:i] <- TruncateDoubleWordToByte (SRC[m+31:m]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+7:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+7:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL/4] <- 0;
VPMOVDB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j <- 0 TO KL-1 i <- j * 8 m <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+7:i] <- TruncateDoubleWordToByte (SRC[m+31:m]) ELSE *DEST[i+7:i] remains unchanged* ; merging-masking FI; ENDFOR
VPMOVSDB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j <- 0 TO KL-1 i <- j * 8 m <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+7:i] <- SaturateSignedDoubleWordToByte (SRC[m+31:m]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+7:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+7:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL/4] <- 0;
VPMOVSDB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j <- 0 TO KL-1 i <- j * 8 m <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+7:i] <- SaturateSignedDoubleWordToByte (SRC[m+31:m]) ELSE *DEST[i+7:i] remains unchanged* ; merging-masking FI; ENDFOR
VPMOVUSDB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j <- 0 TO KL-1 i <- j * 8 m <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+7:i] <- SaturateUnsignedDoubleWordToByte (SRC[m+31:m]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+7:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+7:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL/4] <- 0; VPMOVUSDB instruction (EVEX encoded versions) when dest is memory (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j <- 0 TO KL-1 i <- j * 8 m <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+7:i] <- SaturateUnsignedDoubleWordToByte (SRC[m+31:m]) ELSE *DEST[i+7:i] remains unchanged* ; merging-masking FI; ENDFOR
Intel C/C++ Compiler Intrinsic Equivalents
VPMOVDB __m128i _mm512_cvtepi32_epi8(__m512i a); VPMOVDB __m128i _mm512_mask_cvtepi32_epi8(__m128i s, __mmask16 k, __m512i a); VPMOVDB __m128i _mm512_maskz_cvtepi32_epi8(__mmask16 k, __m512i a); VPMOVDB void _mm512_mask_cvtepi32_storeu_epi8(void* d, __mmask16 k, __m512i a); VPMOVSDB __m128i _mm512_cvtsepi32_epi8(__m512i a); VPMOVSDB __m128i _mm512_mask_cvtsepi32_epi8(__m128i s, __mmask16 k, __m512i a); VPMOVSDB __m128i _mm512_maskz_cvtsepi32_epi8(__mmask16 k, __m512i a); VPMOVSDB void _mm512_mask_cvtsepi32_storeu_epi8(void* d, __mmask16 k, __m512i a); VPMOVUSDB __m128i _mm512_cvtusepi32_epi8(__m512i a); VPMOVUSDB __m128i _mm512_mask_cvtusepi32_epi8(__m128i s, __mmask16 k, __m512i a); VPMOVUSDB __m128i _mm512_maskz_cvtusepi32_epi8(__mmask16 k, __m512i a); VPMOVUSDB void _mm512_mask_cvtusepi32_storeu_epi8(void* d, __mmask16 k, __m512i a); VPMOVUSDB __m128i _mm256_cvtusepi32_epi8(__m256i a); VPMOVUSDB __m128i _mm256_mask_cvtusepi32_epi8(__m128i a, __mmask8 k, __m256i b); VPMOVUSDB __m128i _mm256_maskz_cvtusepi32_epi8(__mmask8 k, __m256i b); VPMOVUSDB void _mm256_mask_cvtusepi32_storeu_epi8(void*, __mmask8 k, __m256i b); VPMOVUSDB __m128i _mm_cvtusepi32_epi8(__m128i a); VPMOVUSDB __m128i _mm_mask_cvtusepi32_epi8(__m128i a, __mmask8 k, __m128i b); VPMOVUSDB __m128i _mm_maskz_cvtusepi32_epi8(__mmask8 k, __m128i b); VPMOVUSDB void _mm_mask_cvtusepi32_storeu_epi8(void*, __mmask8 k, __m128i b); VPMOVSDB __m128i _mm256_cvtsepi32_epi8(__m256i a); VPMOVSDB __m128i _mm256_mask_cvtsepi32_epi8(__m128i a, __mmask8 k, __m256i b); VPMOVSDB __m128i _mm256_maskz_cvtsepi32_epi8(__mmask8 k, __m256i b); VPMOVSDB void _mm256_mask_cvtsepi32_storeu_epi8(void*, __mmask8 k, __m256i b); VPMOVSDB __m128i _mm_cvtsepi32_epi8(__m128i a); VPMOVSDB __m128i _mm_mask_cvtsepi32_epi8(__m128i a, __mmask8 k, __m128i b); VPMOVSDB __m128i _mm_maskz_cvtsepi32_epi8(__mmask8 k, __m128i b); VPMOVSDB void _mm_mask_cvtsepi32_storeu_epi8(void*, __mmask8 k, __m128i b); VPMOVDB __m128i _mm256_cvtepi32_epi8(__m256i a); VPMOVDB __m128i _mm256_mask_cvtepi32_epi8(__m128i a, __mmask8 k, __m256i b); VPMOVDB __m128i _mm256_maskz_cvtepi32_epi8(__mmask8 k, __m256i b); VPMOVDB void _mm256_mask_cvtepi32_storeu_epi8(void*, __mmask8 k, __m256i b); VPMOVDB __m128i _mm_cvtepi32_epi8(__m128i a); VPMOVDB __m128i _mm_mask_cvtepi32_epi8(__m128i a, __mmask8 k, __m128i b); VPMOVDB __m128i _mm_maskz_cvtepi32_epi8(__mmask8 k, __m128i b); VPMOVDB void _mm_mask_cvtepi32_storeu_epi8(void*, __mmask8 k, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E6.
#UD If EVEX.vvvv != 1111B.
댓글을 불러오는 중입니다..