모두의 코드
VPSCATTERDD, VPSCATTERDQ, VPSCATTERQD, VPSCATTERQQs (Intel x86/64 assembly instruction)
VPSCATTERDD, VPSCATTERDQ, VPSCATTERQD, VPSCATTERQQ
Scatter Packed Dword, Packed Qword with Signed Dword, Signed Qword Indices
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op/ | 64/32 | CPUID | Description |
---|---|---|---|---|
| T1S | V/V | AVX512VL | Using signed dword indices, scatter dword values to memory using writemask k1. |
| T1S | V/V | AVX512VL | Using signed dword indices, scatter dword values to memory using writemask k1. |
| T1S | V/V | AVX512F | Using signed dword indices, scatter dword values to memory using writemask k1. |
| T1S | V/V | AVX512VL | Using signed dword indices, scatter qword values to memory using writemask k1. |
| T1S | V/V | AVX512VL | Using signed dword indices, scatter qword values to memory using writemask k1. |
| T1S | V/V | AVX512F | Using signed dword indices, scatter qword values to memory using writemask k1. |
| T1S | V/V | AVX512VL | Using signed qword indices, scatter dword values to memory using writemask k1. |
| T1S | V/V | AVX512VL | Using signed qword indices, scatter dword values to memory using writemask k1. |
| T1S | V/V | AVX512F | Using signed qword indices, scatter dword values to memory using writemask k1. |
| T1S | V/V | AVX512VL | Using signed qword indices, scatter qword values to memory using writemask k1. |
| T1S | V/V | AVX512VL | Using signed qword indices, scatter qword values to memory using writemask k1. |
| T1S | V/V | AVX512F | Using signed qword indices, scatter qword values to memory using writemask k1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
T1S | BaseReg (R): VSIB:base,VectorReg(R): VSIB:index | ModRM:reg (r) | NA | NA |
Description
Stores up to 16 elements (8 elements for qword indices) in doubleword vector or 8 elements in quadword vector to the memory locations pointed by base address BASEADDR and index vector VINDEX, with scale SCALE. The elements are specified via the VSIB (i.e., the index register is a vector register, holding packed indices). Elements will only be stored if their corresponding mask bit is one. The entire mask register will be set to zero by this instruc-tion unless it triggers an exception.
This instruction can be suspended by an exception if at least one element is already scattered (i.e., if the exception is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination register and the mask register are partially updated. If any traps or interrupts are pending from already scattered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction break-point is not re-triggered when the instruction is continued.
Note that:
Only writes to overlapping vector indices are guaranteed to be ordered with respect to each other (from LSB to MSB of the source registers). Note that this also include partially overlapping vector indices. Writes that are not overlapped may happen in any order. Memory ordering with other instructions follows the Intel-64 memory ordering model. Note that this does not account for non-overlapping indices that map into the same physical address locations.
If two or more destination indices completely overlap, the "earlier" write(s) may be skipped.
Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all elements closer to the LSB of the destination ZMM will be completed (and non-faulting). Individual elements closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the conventional order.
Elements may be scattered in any order, but faults must be delivered in a right-to left order; thus, elements to the left of a faulting one may be gathered before the fault is delivered. A given implementation of this instruction is repeatable - given the same input values and architectural state, the same set of elements to the left of the faulting one will be gathered.
This instruction does not perform AC checks, and so will never deliver an AC fault.
Not valid with 16-bit effective addresses. Will deliver a #UD fault.
If this instruction overwrites itself and then takes a fault, only a subset of elements may be completed before the fault is delivered (as described above). If the fault handler completes and attempts to re-execute this instruction, the new instruction will be executed, and the scatter will not complete.
Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if ModRM.rm is different than 100b.
This instruction has special disp8\esc{*}N and alignment rules. N is considered to be the size of a single vector element.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits are ignored.
The instruction will #UD fault if the k0 mask register is specified.
The instruction will #UD fault if EVEX.Z = 1.
Operation
VPSCATTERDD (EVEX encoded versions)
(KL, VL)= (4, 128), (8, 256), (16, 512) FOR j <- 0 TO KL-1 i <- j * 32 IF k1[j] OR *no writemask* THEN MEM[BASE_ADDR +SignExtend(VINDEX[i+31:i]) * SCALE + DISP] <-!= SRC[i+31:i] k1[j] <- 0 FI; ENDFOR k1[MAX_KL-1:KL] <- 0
VPSCATTERDQ (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 64 k <- j * 32 IF k1[j] OR *no writemask* THEN MEM[BASE_ADDR +SignExtend(VINDEX[k+31:k]) * SCALE + DISP] <-!= SRC[i+63:i] k1[j] <- 0 FI; ENDFOR k1[MAX_KL-1:KL] <- 0
VPSCATTERQD (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 32 k <- j * 64 IF k1[j] OR *no writemask* THEN MEM[BASE_ADDR + (VINDEX[k+63:k]) * SCALE + DISP] <-!= SRC[i+31:i] k1[j] <- 0 FI; ENDFOR k1[MAX_KL-1:KL] <- 0
VPSCATTERQQ (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 64 IF k1[j] OR *no writemask* THEN MEM[BASE_ADDR + (VINDEX[j+63:j]) * SCALE + DISP] !=<- SRC[i+63:i] FI; ENDFOR k1[MAX_KL-1:KL] <- 0
Intel C/C++ Compiler Intrinsic Equivalent
VPSCATTERDD void _mm512_i32scatter_epi32(void* base, __m512i vdx, __m512i a, int scale); VPSCATTERDD void _mm256_i32scatter_epi32(void* base, __m256i vdx, __m256i a, int scale); VPSCATTERDD void _mm_i32scatter_epi32(void* base, __m128i vdx, __m128i a, int scale); VPSCATTERDD void _mm512_mask_i32scatter_epi32(void* base, __mmask16 k, __m512i vdx, __m512i a, int scale); VPSCATTERDD void _mm256_mask_i32scatter_epi32(void* base, __mmask8 k, __m256i vdx, __m256i a, int scale); VPSCATTERDD void _mm_mask_i32scatter_epi32(void* base, __mmask8 k, __m128i vdx, __m128i a, int scale); VPSCATTERDQ void _mm512_i32scatter_epi64(void* base, __m256i vdx, __m512i a, int scale); VPSCATTERDQ void _mm256_i32scatter_epi64(void* base, __m128i vdx, __m256i a, int scale); VPSCATTERDQ void _mm_i32scatter_epi64(void* base, __m128i vdx, __m128i a, int scale); VPSCATTERDQ void _mm512_mask_i32scatter_epi64(void* base, __mmask8 k, __m256i vdx, __m512i a, int scale); VPSCATTERDQ void _mm256_mask_i32scatter_epi64(void* base, __mmask8 k, __m128i vdx, __m256i a, int scale); VPSCATTERDQ void _mm_mask_i32scatter_epi64(void* base, __mmask8 k, __m128i vdx, __m128i a, int scale); VPSCATTERQD void _mm512_i64scatter_epi32(void* base, __m512i vdx, __m256i a, int scale); VPSCATTERQD void _mm256_i64scatter_epi32(void* base, __m256i vdx, __m128i a, int scale); VPSCATTERQD void _mm_i64scatter_epi32(void* base, __m128i vdx, __m128i a, int scale); VPSCATTERQD void _mm512_mask_i64scatter_epi32(void* base, __mmask8 k, __m512i vdx, __m256i a, int scale); VPSCATTERQD void _mm256_mask_i64scatter_epi32(void* base, __mmask8 k, __m256i vdx, __m128i a, int scale); VPSCATTERQD void _mm_mask_i64scatter_epi32(void* base, __mmask8 k, __m128i vdx, __m128i a, int scale); VPSCATTERQQ void _mm512_i64scatter_epi64(void* base, __m512i vdx, __m512i a, int scale); VPSCATTERQQ void _mm256_i64scatter_epi64(void* base, __m256i vdx, __m256i a, int scale); VPSCATTERQQ void _mm_i64scatter_epi64(void* base, __m128i vdx, __m128i a, int scale); VPSCATTERQQ void _mm512_mask_i64scatter_epi64(void* base, __mmask8 k, __m512i vdx, __m512i a, int scale); VPSCATTERQQ void _mm256_mask_i64scatter_epi64(void* base, __mmask8 k, __m256i vdx, __m256i a, int scale); VPSCATTERQQ void _mm_mask_i64scatter_epi64(void* base, __mmask8 k, __m128i vdx, __m128i a, int scale);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E12.
댓글을 불러오는 중입니다..