모두의 코드
VPMOVQD, VPMOVSQD, VPMOVUSQDs (Intel x86/64 assembly instruction)
VPMOVQD, VPMOVSQD, VPMOVUSQD
Down Convert QWord to DWord
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
| A | V/V | AVX512VL | Converts 2 packed quad-word integers from xmm2 into 2 packed double-word integers in xmm1/m128 with truncation subject to writemask k1. |
| A | V/V | AVX512VL | Converts 2 packed signed quad-word integers from xmm2 into 2 packed signed double-word integers in xmm1/m64 using signed saturation subject to writemask k1. |
| A | V/V | AVX512VL | Converts 2 packed unsigned quad-word integers from xmm2 into 2 packed unsigned double-word integers in xmm1/m64 using unsigned saturation subject to writemask k1. |
| A | V/V | AVX512VL | Converts 4 packed quad-word integers from ymm2 into 4 packed double-word integers in xmm1/m128 with truncation subject to writemask k1. |
| A | V/V | AVX512VL | Converts 4 packed signed quad-word integers from ymm2 into 4 packed signed double-word integers in xmm1/m128 using signed saturation subject to writemask k1. |
| A | V/V | AVX512VL | Converts 4 packed unsigned quad-word integers from ymm2 into 4 packed unsigned double-word integers in xmm1/m128 using unsigned saturation subject to writemask k1. |
| HVM | V/V | AVX512F | Converts 8 packed quad-word integers from zmm2 into 8 packed double-word integers in ymm1/m256 with truncation subject to writemask k1. |
| HVM | V/V | AVX512F | Converts 8 packed signed quad-word integers from zmm2 into 8 packed signed double-word integers in ymm1/m256 using signed saturation subject to writemask k1. |
| HVM | V/V | AVX512F | Converts 8 packed unsigned quad-word integers from zmm2 into 8 packed unsigned double-word integers in ymm1/m256 using unsigned saturation subject to writemask k1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
HVM | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
Description
VPMOVQW down converts 64-bit integer elements in the source operand (the second operand) into packed double-words using truncation. VPMOVSQW converts signed 64-bit integers into packed signed doublewords using signed saturation. VPMOVUSQW convert unsigned quad-word values into unsigned double-word values using unsigned saturation.
The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a 256/128/64-bit memory location.
Down-converted doubleword elements are written to the destination operand (the first operand) from the least-significant doubleword. Doubleword elements of the destination operand are updated according to the writemask. Bits (MAX_VL-1:256/128/64) of the register destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VPMOVQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 32 m <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- TruncateQuadWordToDWord (SRC[m+63:m]) ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL/2] <- 0;
VPMOVQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 32 m <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- TruncateQuadWordToDWord (SRC[m+63:m]) ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFOR
VPMOVSQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 32 m <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- SaturateSignedQuadWordToDWord (SRC[m+63:m]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL/2] <- 0;
VPMOVSQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 32 m <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- SaturateSignedQuadWordToDWord (SRC[m+63:m]) ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFOR
VPMOVUSQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 32 m <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- SaturateUnsignedQuadWordToDWord (SRC[m+63:m]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL/2] <- 0;
VPMOVUSQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 32 m <- j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- SaturateUnsignedQuadWordToDWord (SRC[m+63:m]) ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFOR
Intel C/C++ Compiler Intrinsic Equivalents
VPMOVQD __m256i _mm512_cvtepi64_epi32(__m512i a); VPMOVQD __m256i _mm512_mask_cvtepi64_epi32(__m256i s, __mmask8 k, __m512i a); VPMOVQD __m256i _mm512_maskz_cvtepi64_epi32(__mmask8 k, __m512i a); VPMOVQD void _mm512_mask_cvtepi64_storeu_epi32(void* d, __mmask8 k, __m512i a); VPMOVSQD __m256i _mm512_cvtsepi64_epi32(__m512i a); VPMOVSQD __m256i _mm512_mask_cvtsepi64_epi32(__m256i s, __mmask8 k, __m512i a); VPMOVSQD __m256i _mm512_maskz_cvtsepi64_epi32(__mmask8 k, __m512i a); VPMOVSQD void _mm512_mask_cvtsepi64_storeu_epi32(void* d, __mmask8 k, __m512i a); VPMOVUSQD __m256i _mm512_cvtusepi64_epi32(__m512i a); VPMOVUSQD __m256i _mm512_mask_cvtusepi64_epi32(__m256i s, __mmask8 k, __m512i a); VPMOVUSQD __m256i _mm512_maskz_cvtusepi64_epi32(__mmask8 k, __m512i a); VPMOVUSQD void _mm512_mask_cvtusepi64_storeu_epi32(void* d, __mmask8 k, __m512i a); VPMOVUSQD __m128i _mm256_cvtusepi64_epi32(__m256i a); VPMOVUSQD __m128i _mm256_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m256i b); VPMOVUSQD __m128i _mm256_maskz_cvtusepi64_epi32(__mmask8 k, __m256i b); VPMOVUSQD void _mm256_mask_cvtusepi64_storeu_epi32(void*, __mmask8 k, __m256i b); VPMOVUSQD __m128i _mm_cvtusepi64_epi32(__m128i a); VPMOVUSQD __m128i _mm_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m128i b); VPMOVUSQD __m128i _mm_maskz_cvtusepi64_epi32(__mmask8 k, __m128i b); VPMOVUSQD void _mm_mask_cvtusepi64_storeu_epi32(void*, __mmask8 k, __m128i b); VPMOVSQD __m128i _mm256_cvtsepi64_epi32(__m256i a); VPMOVSQD __m128i _mm256_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m256i b); VPMOVSQD __m128i _mm256_maskz_cvtsepi64_epi32(__mmask8 k, __m256i b); VPMOVSQD void _mm256_mask_cvtsepi64_storeu_epi32(void*, __mmask8 k, __m256i b); VPMOVSQD __m128i _mm_cvtsepi64_epi32(__m128i a); VPMOVSQD __m128i _mm_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m128i b); VPMOVSQD __m128i _mm_maskz_cvtsepi64_epi32(__mmask8 k, __m128i b); VPMOVSQD void _mm_mask_cvtsepi64_storeu_epi32(void*, __mmask8 k, __m128i b); VPMOVQD __m128i _mm256_cvtepi64_epi32(__m256i a); VPMOVQD __m128i _mm256_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m256i b); VPMOVQD __m128i _mm256_maskz_cvtepi64_epi32(__mmask8 k, __m256i b); VPMOVQD void _mm256_mask_cvtepi64_storeu_epi32(void*, __mmask8 k, __m256i b); VPMOVQD __m128i _mm_cvtepi64_epi32(__m128i a); VPMOVQD __m128i _mm_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m128i b); VPMOVQD __m128i _mm_maskz_cvtepi64_epi32(__mmask8 k, __m128i b); VPMOVQD void _mm_mask_cvtepi64_storeu_epi32(void*, __mmask8 k, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E6.
#UD If EVEX.vvvv != 1111B.
댓글을 불러오는 중입니다..