모두의 코드
XORPS (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 1569 번 읽혔습니다.

XORPS

Bitwise Logical XOR of Packed Single Precision Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

0F 57 /r
XORPS xmm1 xmm2/m128

RM

V/V

SSE

Return the bitwise logical XOR of packed single-precision floating-point values in xmm1 and xmm2/mem.

VEX.NDS.128.0F.WIG 57 /r
VXORPS xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Return the bitwise logical XOR of packed single-precision floating-point values in xmm2 and xmm3/mem.

VEX.NDS.256.0F.WIG 57 /r
VXORPS ymm1 ymm2 ymm3/m256

RVM

V/V

AVX

Return the bitwise logical XOR of packed single-precision floating-point values in ymm2 and ymm3/mem.

EVEX.NDS.128.0F.W0 57 /r
VXORPS xmm1 {k1}{z} xmm2 xmm3/m128/m32bcst

FV

V/V

AVX512VL
AVX512DQ

Return the bitwise logical XOR of packed single-precision floating-point values in xmm2 and xmm3/m128/m32bcst subject to writemask k1.

EVEX.NDS.256.0F.W0 57 /r
VXORPS ymm1 {k1}{z} ymm2 ymm3/m256/m32bcst

FV

V/V

AVX512VL
AVX512DQ

Return the bitwise logical XOR of packed single-precision floating-point values in ymm2 and ymm3/m256/m32bcst subject to writemask k1.

EVEX.NDS.512.0F.W0 57 /r
VXORPS zmm1 {k1}{z} zmm2 zmm3/m512/m32bcst

FV

V/V

AVX512DQ

Return the bitwise logical XOR of packed single-precision floating-point values in zmm2 and zmm3/m512/m32bcst subject to writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv

ModRM:r/m (r)

NA

FV

ModRM:reg (w)

EVEX.vvvv

ModRM:r/m (r)

NA

Description

Performs a bitwise logical XOR of the four, eight or sixteen packed single-precision floating-point values from the first source operand and the second source operand, and stores the result in the destination operand

EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand can be a ZMM register or a vector memory location. The destination operand is a ZMM register conditionally updated with writemask k1.

VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register (conditionally updated with writemask k1 in case of EVEX). The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed.

VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register (conditionally updated with writemask k1 in case of EVEX). The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding register destination are unmodified.

Operation

VXORPS (EVEX encoded versions)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask* THEN
                IF (EVEX.b == 1) AND (SRC2 *is memory*)
                      THEN DEST[i+31:i] <-  SRC1[i+31:i] BITWISE XOR SRC2[31:0];
                      ELSE DEST[i+31:i] <-  SRC1[i+31:i] BITWISE XOR SRC2[i+31:i];
                FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking
                            DEST[i+31:i] = 0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VXORPS (VEX.256 encoded version)

DEST[31:0] <-  SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] <-  SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] <-  SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] <-  SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[159:128] <-  SRC1[159:128] BITWISE XOR SRC2[159:128]
DEST[191:160] <-  SRC1[191:160] BITWISE XOR SRC2[191:160]
DEST[223:192] <-  SRC1[223:192] BITWISE XOR SRC2[223:192]
DEST[255:224] <-  SRC1[255:224] BITWISE XOR SRC2[255:224].
DEST[MAX_VL-1:256] <-  0

VXORPS (VEX.128 encoded version)

DEST[31:0] <-  SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] <-  SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] <-  SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] <-  SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAX_VL-1:128] <-  0

XORPS (128-bit Legacy SSE version)

DEST[31:0] <-  SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] <-  SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] <-  SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] <-  SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAX_VL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VXORPS __m512 _mm512_xor_ps(__m512 a, __m512 b);
VXORPS __m512 _mm512_mask_xor_ps(__m512 a, __mmask16 m, __m512 b);
VXORPS __m512 _mm512_maskz_xor_ps(__mmask16 m, __m512 a);
VXORPS __m256 _mm256_xor_ps(__m256 a, __m256 b);
VXORPS __m256 _mm256_mask_xor_ps(__m256 a, __mmask8 m, __m256 b);
VXORPS __m256 _mm256_maskz_xor_ps(__mmask8 m, __m256 a);
XORPS __m128 _mm_xor_ps(__m128 a, __m128 b);
VXORPS __m128 _mm_mask_xor_ps(__m128 a, __mmask8 m, __m128 b);
VXORPS __m128 _mm_maskz_xor_ps(__mmask8 m, __m128 a);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instructions, see Exceptions Type 4.

EVEX-encoded instructions, see Exceptions Type E4.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..