모두의 코드
MULPS (Intel x86/64 assembly instruction)
MULPS
Multiply Packed Single-Precision Floating-Point Values
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
| RM | V/V | SSE | Multiply packed single-precision floating-point values in xmm2/m128 with xmm1 and store result in xmm1. |
| RVM | V/V | AVX | Multiply packed single-precision floating-point values in xmm3/m128 with xmm2 and store result in xmm1. |
| RVM | V/V | AVX | Multiply packed single-precision floating-point values in ymm3/m256 with ymm2 and store result in ymm1. |
| FV | V/V | AVX512VL | Multiply packed single-precision floating-point values from xmm3/m128/m32bcst to xmm2 and store result in xmm1. |
| FV | V/V | AVX512VL | Multiply packed single-precision floating-point values from ymm3/m256/m32bcst to ymm2 and store result in ymm1. |
| FV | V/V | AVX512F | Multiply packed single-precision floating-point values in zmm3/m512/m32bcst with zmm2 and store result in zmm1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RM | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
RVM | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
FV | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | NA |
Description
Multiply the packed single-precision floating-point values from the first source operand with the corresponding values in the second source operand, and stores the packed double-precision floating-point results in the destina-tion operand.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. Bits (MAXVL-1:256) of the corresponding destination ZMM register are zeroed.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the destination YMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
Operation
VMULPS (EVEX encoded version)
(KL, VL) = (4, 128), (8, 256), (16, 512) IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register* THEN SET_RM(EVEX.RC); ELSE SET_RM(MXCSR.RM); FI; FOR j <- 0 TO KL-1 i <- j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN DEST[i+31:i] <- SRC1[i+31:i] * SRC2[31:0] ELSE DEST[i+31:i] <- SRC1[i+31:i] * SRC2[i+31:i] FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
VMULPS (VEX.256 encoded version)
DEST[31:0] <- SRC1[31:0] * SRC2[31:0] DEST[63:32] <- SRC1[63:32] * SRC2[63:32] DEST[95:64] <- SRC1[95:64] * SRC2[95:64] DEST[127:96] <- SRC1[127:96] * SRC2[127:96] DEST[159:128] <- SRC1[159:128] * SRC2[159:128] DEST[191:160]<- SRC1[191:160] * SRC2[191:160] DEST[223:192] <- SRC1[223:192] * SRC2[223:192] DEST[255:224] <- SRC1[255:224] * SRC2[255:224]. DEST[MAX_VL-1:256] <- 0;
VMULPS (VEX.128 encoded version)
DEST[31:0] <- SRC1[31:0] * SRC2[31:0] DEST[63:32] <- SRC1[63:32] * SRC2[63:32] DEST[95:64] <- SRC1[95:64] * SRC2[95:64] DEST[127:96] <- SRC1[127:96] * SRC2[127:96] DEST[MAX_VL-1:128] <- 0
MULPS (128-bit Legacy SSE version)
DEST[31:0] <- SRC1[31:0] * SRC2[31:0] DEST[63:32] <- SRC1[63:32] * SRC2[63:32] DEST[95:64] <- SRC1[95:64] * SRC2[95:64] DEST[127:96] <- SRC1[127:96] * SRC2[127:96] DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMULPS __m512 _mm512_mul_ps(__m512 a, __m512 b); VMULPS __m512 _mm512_mask_mul_ps(__m512 s, __mmask16 k, __m512 a, __m512 b); VMULPS __m512 _mm512_maskz_mul_ps(__mmask16 k, __m512 a, __m512 b); VMULPS __m512 _mm512_mul_round_ps(__m512 a, __m512 b, int); VMULPS __m512 _mm512_mask_mul_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int); VMULPS __m512 _mm512_maskz_mul_round_ps(__mmask16 k, __m512 a, __m512 b, int); VMULPS __m256 _mm256_mask_mul_ps(__m256 s, __mmask8 k, __m256 a, __m256 b); VMULPS __m256 _mm256_maskz_mul_ps(__mmask8 k, __m256 a, __m256 b); VMULPS __m128 _mm_mask_mul_ps(__m128 s, __mmask8 k, __m128 a, __m128 b); VMULPS __m128 _mm_maskz_mul_ps(__mmask8 k, __m128 a, __m128 b); VMULPS __m256 _mm256_mul_ps(__m256 a, __m256 b); MULPS __m128 _mm_mul_ps(__m128 a, __m128 b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 2.
EVEX-encoded instruction, see Exceptions Type E2.

댓글을 불러오는 중입니다..