모두의 코드
PAND (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 634 번 읽혔습니다.

PAND

Logical AND

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature Flag

Description

0F DB /r\footnote{1}
PAND mm mm/m64

RM

V/V

MMX

Bitwise AND mm/m64 and mm.

66 0F DB /r
PAND xmm1 xmm2/m128

RM

V/V

SSE2

Bitwise AND of xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG DB /r
VPAND xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Bitwise AND of xmm3/m128 and xmm.

VEX.NDS.256.66.0F.WIG DB /r
VPAND ymm1 ymm2 ymm3/.m256

RVM

V/V

AVX2

Bitwise AND of ymm2, and ymm3/m256 and store result in ymm1.

EVEX.NDS.128.66.0F.W0 DB /r
VPANDD xmm1 {k1}{z} xmm2 xmm3/m128/m32bcst

FV

V/V

AVX512VL
AVX512F

Bitwise AND of packed doubleword integers in xmm2 and xmm3/m128/m32bcst and store result in xmm1 using writemask k1.

EVEX.NDS.256.66.0F.W0 DB /r
VPANDD ymm1 {k1}{z} ymm2 ymm3/m256/m32bcst

FV

V/V

AVX512VL
AVX512F

Bitwise AND of packed doubleword integers in ymm2 and ymm3/m256/m32bcst and store result in ymm1 using writemask k1.

EVEX.NDS.512.66.0F.W0 DB /r
VPANDD zmm1 {k1}{z} zmm2 zmm3/m512/m32bcst

FV

V/V

AVX512F

Bitwise AND of packed doubleword integers in zmm2 and zmm3/m512/m32bcst and store result in zmm1 using writemask k1.

EVEX.NDS.128.66.0F.W1 DB /r
VPANDQ xmm1 {k1}{z} xmm2 xmm3/m128/m64bcst

FV

V/V

AVX512VL
AVX512F

Bitwise AND of packed quadword integers in xmm2 and xmm3/m128/m64bcst and store result in xmm1 using writemask k1.

EVEX.NDS.256.66.0F.W1 DB /r
VPANDQ ymm1 {k1}{z} ymm2 ymm3/m256/m64bcst

FV

V/V

AVX512VL
AVX512F

Bitwise AND of packed quadword integers in ymm2 and ymm3/m256/m64bcst and store result in ymm1 using writemask k1.

EVEX.NDS.512.66.0F.W1 DB /r
VPANDQ zmm1 {k1}{z} zmm2 zmm3/m512/m64bcst

FV

V/V

AVX512F

Bitwise AND of packed quadword integers in zmm2 and zmm3/m512/m64bcst and store result in zmm1 using writemask k1.

  1. See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FV

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Performs a bitwise logical AND operation on the first source operand and second source operand and stores the result in the destination operand. Each bit of the result is set to 1 if the corresponding bits of the first and second operands are 1, otherwise it is set to 0.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand can be an MMX technology register.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 32/64-bit granularity.

VEX.256 encoded versions: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed.

VEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.

Operation

PAND (64-bit operand)

DEST <-  DEST AND SRC

PAND (128-bit Legacy SSE version)

DEST <-  DEST AND SRC
DEST[VLMAX-1:128] (Unmodified)

VPAND (VEX.128 encoded version)

DEST <-  SRC1 AND SRC2
DEST[VLMAX-1:128] <-  0

VPAND (VEX.256 encoded instruction)

DEST[255:0] <-  (SRC1[255:0] AND SRC2[255:0])
DEST[VLMAX-1:256] <-  0

VPANDD (EVEX encoded versions)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN 
                IF (EVEX.b = 1) AND (SRC2 *is memory*)
                      THEN DEST[i+31:i] <-  SRC1[i+31:i] BITWISE AND SRC2[31:0]
                      ELSE DEST[i+31:i] <-  SRC1[i+31:i] BITWISE AND SRC2[i+31:i]
                FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VPANDQ (EVEX encoded versions)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN 
                IF (EVEX.b = 1) AND (SRC2 *is memory*)
                      THEN DEST[i+63:i] <-  SRC1[i+63:i] BITWISE AND SRC2[63:0]
                      ELSE DEST[i+63:i] <-  SRC1[i+63:i] BITWISE AND SRC2[i+63:i]
                FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalents

VPANDD __m512i _mm512_and_epi32(__m512i a, __m512i b);
VPANDD __m512i _mm512_mask_and_epi32(__m512i s, __mmask16 k, __m512i a,
                                     __m512i b);
VPANDD __m512i _mm512_maskz_and_epi32(__mmask16 k, __m512i a, __m512i b);
VPANDQ __m512i _mm512_and_epi64(__m512i a, __m512i b);
VPANDQ __m512i _mm512_mask_and_epi64(__m512i s, __mmask8 k, __m512i a,
                                     __m512i b);
VPANDQ __m512i _mm512_maskz_and_epi64(__mmask8 k, __m512i a, __m512i b);
VPANDND __m256i _mm256_mask_and_epi32(__m256i s, __mmask8 k, __m256i a,
                                      __m256i b);
VPANDND __m256i _mm256_maskz_and_epi32(__mmask8 k, __m256i a, __m256i b);
VPANDND __m128i _mm_mask_and_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPANDND __m128i _mm_maskz_and_epi32(__mmask8 k, __m128i a, __m128i b);
VPANDNQ __m256i _mm256_mask_and_epi64(__m256i s, __mmask8 k, __m256i a,
                                      __m256i b);
VPANDNQ __m256i _mm256_maskz_and_epi64(__mmask8 k, __m256i a, __m256i b);
VPANDNQ __m128i _mm_mask_and_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPANDNQ __m128i _mm_maskz_and_epi64(__mmask8 k, __m128i a, __m128i b);
PAND : __m64 _mm_and_si64(__m64 m1, __m64 m2)(V) PAND
    : __m128i _mm_and_si128(__m128i a, __m128i b) VPAND
    : __m256i _mm256_and_si256(__m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded instruction, see Exceptions Type E4.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..