모두의 코드
PANDN (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 767 번 읽혔습니다.

PANDN

Logical AND NOT

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F DF /r\footnote{1}
PANDN mm mm/m64

RM

V/V

MMX

Bitwise AND NOT of mm/m64 and mm.

66 0F DF /r
PANDN xmm1 xmm2/m128

RM

V/V

SSE2

Bitwise AND NOT of xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG DF /r
VPANDN xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Bitwise AND NOT of xmm3/m128 and xmm2.

VEX.NDS.256.66.0F.WIG DF /r
VPANDN ymm1 ymm2 ymm3/m256

RVM

V/V

AVX2

Bitwise AND NOT of ymm2, and ymm3/m256 and store result in ymm1.

EVEX.NDS.128.66.0F.W0 DF /r
VPANDND xmm1 {k1}{z} xmm2 xmm3/m128/m32bcst

FV

V/V

AVX512VL
AVX512F

Bitwise AND NOT of packed doubleword integers in xmm2 and xmm3/m128/m32bcst and store result in xmm1 using writemask k1.

EVEX.NDS.256.66.0F.W0 DF /r
VPANDND ymm1 {k1}{z} ymm2 ymm3/m256/m32bcst

FV

V/V

AVX512VL
AVX512F

Bitwise AND NOT of packed doubleword integers in ymm2 and ymm3/m256/m32bcst and store result in ymm1 using writemask k1.

EVEX.NDS.512.66.0F.W0 DF /r
VPANDND zmm1 {k1}{z} zmm2 zmm3/m512/m32bcst

FV

V/V

AVX512F

Bitwise AND NOT of packed doubleword integers in zmm2 and zmm3/m512/m32bcst and store result in zmm1 using writemask k1.

EVEX.NDS.128.66.0F.W1 DF /r
VPANDNQ xmm1 {k1}{z} xmm2 xmm3/m128/m64bcst

FV

V/V

AVX512VL
AVX512F

Bitwise AND NOT of packed quadword integers in xmm2 and xmm3/m128/m64bcst and store result in xmm1 using writemask k1.

EVEX.NDS.256.66.0F.W1 DF /r
VPANDNQ ymm1 {k1}{z} ymm2 ymm3/m256/m64bcst

FV

V/V

AVX512VL
AVX512F

Bitwise AND NOT of packed quadword integers in ymm2 and ymm3/m256/m64bcst and store result in ymm1 using writemask k1.

EVEX.NDS.512.66.0F.W1 DF /r
VPANDNQ zmm1 {k1}{z} zmm2 zmm3/m512/m64bcst

FV

V/V

AVX512F

Bitwise AND NOT of packed quadword integers in zmm2 and zmm3/m512/m64bcst and store result in zmm1 using writemask k1.

  1. See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FV

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Performs a bitwise logical NOT operation on the first source operand, then performs bitwise AND with second source operand and stores the result in the destination operand. Each bit of the result is set to 1 if the corre-sponding bit in the first operand is 0 and the corresponding bit in the second operand is 1, otherwise it is set to 0.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand can be an MMX technology register.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 32/64-bit granularity.

VEX.256 encoded versions: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed.

VEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.

Operation

PANDN (64-bit operand)

DEST <-  NOT(DEST) AND SRC

PANDN (128-bit Legacy SSE version)

DEST <-  NOT(DEST) AND SRC
DEST[VLMAX-1:128] (Unmodified)

VPANDN (VEX.128 encoded version)

DEST <-  NOT(SRC1) AND SRC2
DEST[VLMAX-1:128] <-  0

VPANDN (VEX.256 encoded instruction)

DEST[255:0] <-  ((NOT SRC1[255:0]) AND SRC2[255:0])
DEST[VLMAX-1:256] <-  0

VPANDND (EVEX encoded versions)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN 
                IF (EVEX.b = 1) AND (SRC2 *is memory*)
                      THEN DEST[i+31:i] <-  ((NOT SRC1[i+31:i]) AND SRC2[31:0])
                      ELSE DEST[i+31:i] <-  ((NOT SRC1[i+31:i]) AND SRC2[i+31:i])
                FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VPANDNQ (EVEX encoded versions)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN 
                IF (EVEX.b = 1) AND (SRC2 *is memory*)
                      THEN DEST[i+63:i] <-  ((NOT SRC1[i+63:i]) AND SRC2[63:0])
                      ELSE DEST[i+63:i] <-  ((NOT SRC1[i+63:i]) AND SRC2[i+63:i])
                FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalents

VPANDND __m512i _mm512_andnot_epi32(__m512i a, __m512i b);
VPANDND __m512i _mm512_mask_andnot_epi32(__m512i s, __mmask16 k, __m512i a,
                                         __m512i b);
VPANDND __m512i _mm512_maskz_andnot_epi32(__mmask16 k, __m512i a, __m512i b);
VPANDND __m256i _mm256_mask_andnot_epi32(__m256i s, __mmask8 k, __m256i a,
                                         __m256i b);
VPANDND __m256i _mm256_maskz_andnot_epi32(__mmask8 k, __m256i a, __m256i b);
VPANDND __m128i _mm_mask_andnot_epi32(__m128i s, __mmask8 k, __m128i a,
                                      __m128i b);
VPANDND __m128i _mm_maskz_andnot_epi32(__mmask8 k, __m128i a, __m128i b);
VPANDNQ __m512i _mm512_andnot_epi64(__m512i a, __m512i b);
VPANDNQ __m512i _mm512_mask_andnot_epi64(__m512i s, __mmask8 k, __m512i a,
                                         __m512i b);
VPANDNQ __m512i _mm512_maskz_andnot_epi64(__mmask8 k, __m512i a, __m512i b);
VPANDNQ __m256i _mm256_mask_andnot_epi64(__m256i s, __mmask8 k, __m256i a,
                                         __m256i b);
VPANDNQ __m256i _mm256_maskz_andnot_epi64(__mmask8 k, __m256i a, __m256i b);
VPANDNQ __m128i _mm_mask_andnot_epi64(__m128i s, __mmask8 k, __m128i a,
                                      __m128i b);
VPANDNQ __m128i _mm_maskz_andnot_epi64(__mmask8 k, __m128i a, __m128i b);
PANDN : __m64 _mm_andnot_si64(__m64 m1, __m64 m2)(V) PANDN
    : __m128i _mm_andnot_si128(__m128i a, __m128i b) VPANDN
    : __m256i _mm256_andnot_si256(__m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded instruction, see Exceptions Type E4.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..