모두의 코드
PMADDUBSW (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 794 번 읽혔습니다.

PMADDUBSW

Multiply and Add Packed Signed and Unsigned Bytes

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 04 /r\footnote{1}
PMADDUBSW mm1 mm2/m64

RM

V/V

SSSE3

Multiply signed and unsigned bytes, add horizontal pair of signed words, pack saturated signed-words to mm1.

66 0F 38 04 /r
PMADDUBSW xmm1 xmm2/m128

RM

V/V

SSSE3

Multiply signed and unsigned bytes, add horizontal pair of signed words, pack saturated signed-words to xmm1.

VEX.NDS.128.66.0F38.WIG 04 /r
VPMADDUBSW xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Multiply signed and unsigned bytes, add horizontal pair of signed words, pack saturated signed-words to xmm1.

VEX.NDS.256.66.0F38.WIG 04 /r
VPMADDUBSW ymm1 ymm2 ymm3/m256

RVM

V/V

AVX2

Multiply signed and unsigned bytes, add horizontal pair of signed words, pack saturated signed-words to ymm1.

EVEX.NDS.128.66.0F38.WIG 04 /r
VPMADDUBSW xmm1 {k1}{z} xmm2 xmm3/m128

FVM

V/V

AVX512VL
AVX512BW

Multiply signed and unsigned bytes, add horizontal pair of signed words, pack saturated signed-words to xmm1 under writemask k1.

EVEX.NDS.256.66.0F38.WIG 04 /r
VPMADDUBSW ymm1 {k1}{z} ymm2 ymm3/m256

FVM

V/V

AVX512VL
AVX512BW

Multiply signed and unsigned bytes, add horizontal pair of signed words, pack saturated signed-words to ymm1 under writemask k1.

EVEX.NDS.512.66.0F38.WIG 04 /r
VPMADDUBSW zmm1 {k1}{z} zmm2 zmm3/m512

FVM

V/V

AVX512BW

Multiply signed and unsigned bytes, add horizontal pair of signed words, pack saturated signed-words to zmm1 under writemask k1.

  1. See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FVM

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

(V)PMADDUBSW multiplies vertically each unsigned byte of the destination operand (first operand) with the corre-sponding signed byte of the source operand (second operand), producing intermediate signed 16-bit integers. Each adjacent pair of signed words is added and the saturated result is packed to the destination operand. For example, the lowest-order bytes (bits 7-0) in the source and destination operands are multiplied and the intermediate signed word result is added with the corresponding intermediate result from the 2nd lowest-order bytes (bits 15-8) of the operands; the sign-saturated result is stored in the lowest word of the destination register (15-0). The same oper-ation is performed on the other pairs of adjacent bytes. Both operands can be MMX register or XMM registers. When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode and not encoded with VEX/EVEX, use the REX prefix to access XMM8-XMM15.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination register remain unchanged.

VEX.128 and EVEX.128 encoded versions: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corre-sponding destination register are zeroed.

VEX.256 and EVEX.256 encoded versions: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers. Bits (MAX_VL-1:256) of the corresponding ZMM register are zeroed.

EVEX.512 encoded version: The second source operand can be an ZMM register or a 512-bit memory location. The first source and destination operands are ZMM registers.

Operation

PMADDUBSW (with 64 bit operands)

    DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-0]);
    DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
    DEST[47-32] = SaturateToSignedWord(SRC[47-40]*DEST[47-40]+SRC[39-32]*DEST[39-32]);
    DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-48]*DEST[55-48]);

PMADDUBSW (with 128 bit operands)

    DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);
    // Repeat operation for 2nd through 7th word 
    SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-120]+ SRC[119-112]* DEST[119-112]);

VPMADDUBSW (VEX.128 encoded version)

DEST[15:0] <-  SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 7th word 
DEST[127:112] <-  SaturateToSignedWord(SRC2[127:120]*SRC1[127:120]+ SRC2[119:112]* SRC1[119:112])
DEST[VLMAX-1:128] <-  0

VPMADDUBSW (VEX.256 encoded version)

DEST[15:0] <-  SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 15th word 
DEST[255:240] <-  SaturateToSignedWord(SRC2[255:248]*SRC1[255:248]+ SRC2[247:240]* SRC1[247:240])
DEST[VLMAX-1:256] <-  0

VPMADDUBSW (EVEX encoded versions)

(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j <-  0 TO KL-1
    i <-  j * 16
    IF k1[j] OR *no writemask*
          THEN DEST[i+15:i] <-  SaturateToSignedWord(SRC2[i+15:i+8]* SRC1[i+15:i+8] + SRC2[i+7:i]*SRC1[i+7:i])
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+15:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking
                            DEST[i+15:i] = 0
                FI
    FI;
ENDFOR;
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalents

VPMADDUBSW __m512i _mm512_mddubs_epi16(__m512i a, __m512i b);
VPMADDUBSW __m512i _mm512_mask_mddubs_epi16(__m512i s, __mmask32 k, __m512i a,
                                            __m512i b);
VPMADDUBSW __m512i _mm512_maskz_mddubs_epi16(__mmask32 k, __m512i a, __m512i b);
VPMADDUBSW __m256i _mm256_mask_mddubs_epi16(__m256i s, __mmask16 k, __m256i a,
                                            __m256i b);
VPMADDUBSW __m256i _mm256_maskz_mddubs_epi16(__mmask16 k, __m256i a, __m256i b);
VPMADDUBSW __m128i _mm_mask_mddubs_epi16(__m128i s, __mmask8 k, __m128i a,
                                         __m128i b);
VPMADDUBSW __m128i _mm_maskz_maddubs_epi16(__mmask8 k, __m128i a, __m128i b);
PMADDUBSW : __m64 _mm_maddubs_pi16(__m64 a, __m64 b)(V) PMADDUBSW
    : __m128i _mm_maddubs_epi16(__m128i a, __m128i b) VPMADDUBSW
    : __m256i _mm256_maddubs_epi16(__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded instruction, see Exceptions Type E4NF.nb.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..