모두의 코드
PMADDWD (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 616 번 읽혔습니다.

PMADDWD

Multiply and Add Packed Integers

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F F5 /r\footnote{1}
PMADDWD mm mm/m64

RM

V/V

MMX

Multiply the packed words in mm by the packed words in mm/m64, add adjacent doubleword results, and store in mm.

66 0F F5 /r
PMADDWD xmm1 xmm2/m128

RM

V/V

SSE2

Multiply the packed word integers in xmm1 by the packed word integers in xmm2/m128, add adjacent doubleword results, and store in xmm1.

VEX.NDS.128.66.0F.WIG F5 /r
VPMADDWD xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Multiply the packed word integers in xmm2 by the packed word integers in xmm3/m128, add adjacent doubleword results, and store in xmm1.

VEX.NDS.256.66.0F.WIG F5 /r
VPMADDWD ymm1 ymm2 ymm3/m256

RVM

V/V

AVX2

Multiply the packed word integers in ymm2 by the packed word integers in ymm3/m256, add adjacent doubleword results, and store in ymm1.

EVEX.NDS.128.66.0F.WIG F5 /r
VPMADDWD xmm1 {k1}{z} xmm2 xmm3/m128

FVM

V/V

AVX512VL
AVX512BW

Multiply the packed word integers in xmm2 by the packed word integers in xmm3/m128, add adjacent doubleword results, and store in xmm1 under writemask k1.

EVEX.NDS.256.66.0F.WIG F5 /r
VPMADDWD ymm1 {k1}{z} ymm2 ymm3/m256

FVM

V/V

AVX512VL
AVX512BW

Multiply the packed word integers in ymm2 by the packed word integers in ymm3/m256, add adjacent doubleword results, and store in ymm1 under writemask k1.

EVEX.NDS.512.66.0F.WIG F5 /r
VPMADDWD zmm1 {k1}{z} zmm2 zmm3/m512

FVM

V/V

AVX512BW

Multiply the packed word integers in zmm2 by the packed word integers in zmm3/m512, add adjacent doubleword results, and store in zmm1 under writemask k1.

  1. See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FVM

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Multiplies the individual signed words of the destination operand (first operand) by the corresponding signed words of the source operand (second operand), producing temporary signed, doubleword results. The adjacent double-word results are then summed and stored in the destination operand. For example, the corresponding low-order words (15-0) and (31-16) in the source and destination operands are multiplied by one another and the double-word results are added together and stored in the low doubleword of the destination register (31-0). The same operation is performed on the other pairs of adjacent words. (Figure 4-11 shows this operation when using 64-bit operands).

The (V)PMADDWD instruction wraps around only in one situation: when the 2 pairs of words being operated on in a group are all 8000H. In this case, the result wraps around to 80000000H.

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).

Legacy SSE version: The first source and destination operands are MMX registers. The second source operand is an MMX register or a 64-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-tion register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.

EVEX.512 encoded version: The second source operand can be an ZMM register or a 512-bit memory location. The first source and destination operands are ZMM registers.

P T ) Y `*` 2 X ( ) `*` X ( Y `*` X ( + 1 1 0 Y Y 2 Y 3 T E D T S E R S 0 Y `*` 0 X 1 X 2 Y 3 X 0 1 X X X Y S Y + X Y Y 3 2 E ) 0 0 ) X 3 M 3 `*` 1 3 2 1 `*` ( `*` C X `*` D Y 2
Figure 4-11. PMADDWD Execution Model Using 64-bit Operands

Operation

PMADDWD (with 64-bit operands)

    DEST[31:0] <- (DEST[15:0] `*` SRC[15:0]) + (DEST[31:16] `*` SRC[31:16]);
    DEST[63:32] <- (DEST[47:32] `*` SRC[47:32]) + (DEST[63:48] `*` SRC[63:48]);

PMADDWD (with 128-bit operands)

    DEST[31:0] <- (DEST[15:0] `*` SRC[15:0]) + (DEST[31:16] `*` SRC[31:16]);
    DEST[63:32] <- (DEST[47:32] `*` SRC[47:32]) + (DEST[63:48] `*` SRC[63:48]);
    DEST[95:64] <- (DEST[79:64] `*` SRC[79:64]) + (DEST[95:80] `*` SRC[95:80]);
    DEST[127:96] <- (DEST[111:96] `*` SRC[111:96]) + (DEST[127:112] `*` SRC[127:112]);

VPMADDWD (VEX.128 encoded version)

DEST[31:0] <-  (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])
DEST[63:32] <-  (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64] <-  (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96] <-  (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[VLMAX-1:128] <-  0

VPMADDWD (VEX.256 encoded version)

DEST[31:0] <-  (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])
DEST[63:32] <-  (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64] <-  (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96] <-  (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[159:128] <-  (SRC1[143:128] * SRC2[143:128]) + (SRC1[159:144] * SRC2[159:144])
DEST[191:160] <-  (SRC1[175:160] * SRC2[175:160]) + (SRC1[191:176] * SRC2[191:176])
DEST[223:192] <-  (SRC1[207:192] * SRC2[207:192]) + (SRC1[223:208] * SRC2[223:208])
DEST[255:224] <-  (SRC1[239:224] * SRC2[239:224]) + (SRC1[255:240] * SRC2[255:240])
DEST[VLMAX-1:256] <-  0

VPMADDWD (EVEX encoded versions)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  (SRC2[i+31:i+16]* SRC1[i+31:i+16]) + (SRC2[i+15:i]*SRC1[i+15:i])
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking
                            DEST[i+31:i] = 0
                FI
    FI;
ENDFOR;
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalent

VPMADDWD __m512i _mm512_mdd_epi16(__m512i a, __m512i b);
VPMADDWD __m512i _mm512_mask_mdd_epi16(__m512i s, __mmask16 k, __m512i a,
                                       __m512i b);
VPMADDWD __m512i _mm512_maskz_mdd_epi16(__mmask16 k, __m512i a, __m512i b);
VPMADDWD __m256i _mm256_mask_mdd_epi16(__m256i s, __mmask8 k, __m256i a,
                                       __m256i b);
VPMADDWD __m256i _mm256_maskz_mdd_epi16(__mmask8 k, __m256i a, __m256i b);
VPMADDWD __m128i _mm_mask_mdd_epi16(__m128i s, __mmask8 k, __m128i a,
                                    __m128i b);
VPMADDWD __m128i _mm_maskz_madd_epi16(__mmask8 k, __m128i a, __m128i b);
PMADDWD : __m64 _mm_madd_pi16(__m64 m1, __m64 m2)(V) PMADDWD
    : __m128i _mm_madd_epi16(__m128i a, __m128i b) VPMADDWD
    : __m256i _mm256_madd_epi16(__m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded instruction, see Exceptions Type E4NF.nb.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..