모두의 코드
ADDSS (Intel x86/64 assembly instruction)
ADDSS
Add Scalar Single-Precision Floating-Point Values
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
| RM | V/V | SSE | Add the low single-precision floating-point value from xmm2/mem to xmm1 and store the result in xmm1. |
| RVM | V/V | AVX | Add the low single-precision floating-point value from xmm3/mem to xmm2 and store the result in xmm1. |
| T1S | V/V | AVX512F | Add the low single-precision floating-point value from xmm3/m32 to xmm2 and store the result in xmm1with writemask k1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RM | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
RVM | ModRM:reg (w) | VEX.vvvv | ModRM:r/m (r) | NA |
T1S | ModRM:reg (w) | EVEX.vvvv | ModRM:r/m (r) | NA |
Description
Adds the low single-precision floating-point values from the second source operand and the first source operand, and stores the double-precision floating-point result in the destination operand.
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination operands are XMM registers.
128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAXVL-1:32) of the corresponding the destination register remain unchanged.
EVEX and VEX.128 encoded version: The first source operand is encoded by EVEX.vvvv/VEX.vvvv. Bits (127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX version: The low doubleword element of the destination is updated according to the writemask.
Software should ensure VADDSS is encoded with VEX.L=0. Encoding VADDSS with VEX.L=1 may encounter unpre-dictable behavior across different processor generations.
Operation
VADDSS (EVEX encoded versions)
IF (EVEX.b = 1) AND SRC2 *is a register* THEN SET_RM(EVEX.RC); ELSE SET_RM(MXCSR.RM); FI; IF k1[0] or *no writemask* THEN DEST[31:0] <- SRC1[31:0] + SRC2[31:0] ELSE IF *merging-masking* ; merging-masking THEN *DEST[31:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[31:0] <- 0 FI; FI; DEST[127:32] <- SRC1[127:32] DEST[MAX_VL-1:128] <- 0
VADDSS DEST, SRC1, SRC2 (VEX.128 encoded version)
DEST[31:0] <- SRC1[31:0] + SRC2[31:0] DEST[127:32] <- SRC1[127:32] DEST[MAX_VL-1:128] <- 0
ADDSS DEST, SRC (128-bit Legacy SSE version)
DEST[31:0] <- DEST[31:0] + SRC[31:0] DEST[MAX_VL-1:32] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VADDSS __m128 _mm_mask_add_ss(__m128 s, __mmask8 k, __m128 a, __m128 b); VADDSS __m128 _mm_maskz_add_ss(__mmask8 k, __m128 a, __m128 b); VADDSS __m128 _mm_add_round_ss(__m128 a, __m128 b, int); VADDSS __m128 _mm_mask_add_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int); VADDSS __m128 _mm_maskz_add_round_ss(__mmask8 k, __m128 a, __m128 b, int); ADDSS __m128 _mm_add_ss(__m128 a, __m128 b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instruction, see Exceptions Type 3.
EVEX-encoded instruction, see Exceptions Type E3.
댓글을 불러오는 중입니다..