모두의 코드
ADDSD (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 1125 번 읽혔습니다.

ADDSD

Add Scalar Double-Precision Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

F2 0F 58 /r
ADDSD xmm1 xmm2/m64

RM

V/V

SSE2

Add the low double-precision floating-point value from xmm2/mem to xmm1 and store the result in xmm1.

VEX.NDS.128.F2.0F.WIG 58 /r
VADDSD xmm1 xmm2 xmm3/m64

RVM

V/V

AVX

Add the low double-precision floating-point value from xmm3/mem to xmm2 and store the result in xmm1.

EVEX.NDS.LIG.F2.0F.W1 58 /r
VADDSD xmm1 {k1}{z} xmm2 xmm3/m64{er}

T1S

V/V

AVX512F

Add the low double-precision floating-point value from xmm3/m64 to xmm2 and store the result in xmm1 with writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv

ModRM:r/m (r)

NA

T1S-RVM

ModRM:reg (w)

EVEX.vvvv

ModRM:r/m (r)

NA

Description

Adds the low double-precision floating-point values from the second source operand and the first source operand and stores the double-precision floating-point result in the destination operand.

The second source operand can be an XMM register or a 64-bit memory location. The first source and destination operands are XMM registers.

128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAXVL-1:64) of the corresponding destination register remain unchanged.

EVEX and VEX.128 encoded version: The first source operand is encoded by EVEX.vvvv/VEX.vvvv. Bits (127:64) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.

EVEX version: The low quadword element of the destination is updated according to the writemask.

Software should ensure VADDSD is encoded with VEX.L=0. Encoding VADDSD with VEX.L=1 may encounter unpredictable behavior across different processor generations.

Operation

VADDSD (EVEX encoded version)

IF (EVEX.b = 1) AND SRC2 *is a register*
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
    THEN DEST[63:0] <-  SRC1[63:0] + SRC2[63:0]
    ELSE 
          IF *merging-masking* ; merging-masking
                THEN *DEST[63:0] remains unchanged*
                ELSE  ; zeroing-masking
                      THEN DEST[63:0] <-  0
          FI;
FI;
DEST[127:64] <-  SRC1[127:64]
DEST[MAX_VL-1:128] <-  0

VADDSD (VEX.128 encoded version)

DEST[63:0] <- SRC1[63:0] + SRC2[63:0]
DEST[127:64] <- SRC1[127:64]
DEST[MAX_VL-1:128] <- 0

ADDSD (128-bit Legacy SSE version)

DEST[63:0] <- DEST[63:0] + SRC[63:0]
DEST[MAX_VL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDSD __m128d _mm_mask_add_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VADDSD __m128d _mm_maskz_add_sd(__mmask8 k, __m128d a, __m128d b);
VADDSD __m128d _mm_add_round_sd(__m128d a, __m128d b, int);
VADDSD __m128d _mm_mask_add_round_sd(__m128d s, __mmask8 k, __m128d a,
                                     __m128d b, int);
VADDSD __m128d _mm_maskz_add_round_sd(__mmask8 k, __m128d a, __m128d b, int);
ADDSD __m128d _mm_add_sd(__m128d a, __m128d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instruction, see Exceptions Type 3.

EVEX-encoded instruction, see Exceptions Type E3.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..