모두의 코드
CVTDQ2PD (Intel x86/64 assembly instruction)
CVTDQ2PD
Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
| RM | V/V | SSE2 | Convert two packed signed doubleword integers from xmm2/mem to two packed double-precision floating-point values in xmm1. |
| RM | V/V | AVX | Convert two packed signed doubleword integers from xmm2/mem to two packed double-precision floating-point values in xmm1. |
| RM | V/V | AVX | Convert four packed signed doubleword integers from xmm2/mem to four packed double-precision floating-point values in ymm1. |
| HV | V/V | AVX512VL | Convert 2 packed signed doubleword integers from xmm2/m128/m32bcst to eight packed double-precision floating-point values in xmm1 with writemask k1. |
| HV | V/V | AVX512VL | Convert 4 packed signed doubleword integers from xmm2/m128/m32bcst to 4 packed double-precision floating-point values in ymm1 with writemask k1. |
| HV | V/V | AVX512F | Convert eight packed signed doubleword integers from ymm2/m256/m32bcst to eight packed double-precision floating-point values in zmm1 with writemask k1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RM | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
HV | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
Description
Converts two, four or eight packed signed doubleword integers in the source operand (the second operand) to two, four or eight packed double-precision floating-point values in the destination operand (the first operand).
EVEX encoded versions: The source operand can be a YMM/XMM/XMM (low 64 bits) register, a 256/128/64-bit memory location or a 256/128/64-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1. Attempt to encode this instruction with EVEX embedded rounding is ignored.
VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a YMM register.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination operand is a XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination operand is an XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTDQ2PD (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 64 k <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+63:i] <- Convert_Integer_To_Double_Precision_Floating_Point(SRC[k+31:k]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
VCVTDQ2PD (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j <- 0 TO KL-1 i <- j * 64 k <- j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+63:i] <- Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]) ELSE DEST[i+63:i] <- Convert_Integer_To_Double_Precision_Floating_Point(SRC[k+31:k]) FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
VCVTDQ2PD (VEX.256 encoded version)
DEST[63:0] <- Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] <- Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[191:128] <- Convert_Integer_To_Double_Precision_Floating_Point(SRC[95:64]) DEST[255:192] <- Convert_Integer_To_Double_Precision_Floating_Point(SRC[127:96) DEST[MAX_VL-1:256] <- 0
VCVTDQ2PD (VEX.128 encoded version)
DEST[63:0] <- Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] <- Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[MAX_VL-1:128] <- 0
CVTDQ2PD (128-bit Legacy SSE version)
DEST[63:0] <- Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]) DEST[127:64] <- Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]) DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTDQ2PD __m512d _mm512_cvtepi32_pd(__m256i a); VCVTDQ2PD __m512d _mm512_mask_cvtepi32_pd(__m512d s, __mmask8 k, __m256i a); VCVTDQ2PD __m512d _mm512_maskz_cvtepi32_pd(__mmask8 k, __m256i a); VCVTDQ2PD __m256d _mm256_mask_cvtepi32_pd(__m256d s, __mmask8 k, __m256i a); VCVTDQ2PD __m256d _mm256_maskz_cvtepi32_pd(__mmask8 k, __m256i a); VCVTDQ2PD __m128d _mm_mask_cvtepi32_pd(__m128d s, __mmask8 k, __m128i a); VCVTDQ2PD __m128d _mm_maskz_cvtepi32_pd(__mmask8 k, __m128i a); CVTDQ2PD __m256d _mm256_cvtepi32_pd(__m128i src) CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128i src)
Other Exceptions
VEX-encoded instructions, see Exceptions Type 5;
EVEX-encoded instructions, see Exceptions Type E5.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.

댓글을 불러오는 중입니다..