모두의 코드
CVTPD2DQ (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 494 번 읽혔습니다.

CVTPD2DQ

Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

F2 0F E6 /rCVTPD2DQ xmm1, xmm2/m128

RM

V/V

SSE2

Convert two packed double-precision floating-point values in xmm2/mem to two signed doubleword integers in xmm1.

VEX.128.F2.0F.WIG E6 /rVCVTPD2DQ xmm1, xmm2/m128

RM

V/V

AVX

Convert two packed double-precision floating-point values in xmm2/mem to two signed doubleword integers in xmm1.

VEX.256.F2.0F.WIG E6 /rVCVTPD2DQ xmm1, ymm2/m256

RM

V/V

AVX

Convert four packed double-precision floating-point values in ymm2/mem to four signed doubleword integers in xmm1.

EVEX.128.F2.0F.W1 E6 /rVCVTPD2DQ xmm1 {k1}{z}, xmm2/m128/m64bcst

FV

V/V

AVX512VL
AVX512F

Convert two packed double-precision floating-point values in xmm2/m128/m64bcst to two signed doubleword integers in xmm1 subject to writemask k1.

EVEX.256.F2.0F.W1 E6 /rVCVTPD2DQ xmm1 {k1}{z}, ymm2/m256/m64bcst

FV

V/V

AVX512VL
AVX512F

Convert four packed double-precision floating-point values in ymm2/m256/m64bcst to four signed doubleword integers in xmm1 subject to writemask k1.

EVEX.512.F2.0F.W1 E6 /rVCVTPD2DQ ymm1 {k1}{z}, zmm2/m512/m64bcst{er}

FV

V/V

AVX512F

Convert eight packed double-precision floating-point values in zmm2/m512/m64bcst to eight signed doubleword integers in ymm1 subject to writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

FV

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

Description

Converts packed double-precision floating-point values in the source operand (second operand) to packed signed doubleword integers in the destination operand (first operand).

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register or the embedded rounding control bits. If a converted result cannot be represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (2w-1 , where w represents the number of bits in the destination format) is returned.

EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register condi-tionally updated with writemask k1. The upper bits (MAXVL-1:256/128/64) of the corresponding destination are zeroed.

VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.

VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:64) of the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.

VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.

0 X 2 X 3 3 2 X 1 X X C S E D X 1 0 0 T R S X X
Figure 3-12. VCVTPD2DQ (VEX.256 encoded version)

Operation

VCVTPD2DQ (EVEX encoded versions) when src operand is a register

(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) 
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
FOR j <-  0 TO KL-1
    i <-  j * 32
    k <-  j * 64
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-
                Convert_Double_Precision_Floating_Point_To_Integer(SRC[k+63:k])
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL/2] <-  0

VCVTPD2DQ (EVEX encoded versions) when src operand is a memory source

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    k <-  j * 64
    IF k1[j] OR *no writemask*
          THEN 
                IF (EVEX.b = 1) 
                      THEN
                            DEST[i+31:i] <-
                Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
                      ELSE 
                            DEST[i+31:i] <-
                Convert_Double_Precision_Floating_Point_To_Integer(SRC[k+63:k])
                FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL/2] <-  0

VCVTPD2DQ (VEX.256 encoded version)

DEST[31:0] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[95:64] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[191:128])
DEST[127:96] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[255:192)
DEST[MAX_VL-1:128]<- 0

VCVTPD2DQ (VEX.128 encoded version)

DEST[31:0] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[MAX_VL-1:64]<- 0

CVTPD2DQ (128-bit Legacy SSE version)

DEST[31:0] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] <- Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[127:64] <- 0
DEST[MAX_VL-1:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTPD2DQ __m256i _mm512_cvtpd_epi32(__m512d a);
VCVTPD2DQ __m256i _mm512_mask_cvtpd_epi32(__m256i s, __mmask8 k, __m512d a);
VCVTPD2DQ __m256i _mm512_maskz_cvtpd_epi32(__mmask8 k, __m512d a);
VCVTPD2DQ __m256i _mm512_cvt_roundpd_epi32(__m512d a, int r);
VCVTPD2DQ __m256i _mm512_mask_cvt_roundpd_epi32(__m256i s, __mmask8 k,
                                                __m512d a, int r);
VCVTPD2DQ __m256i _mm512_maskz_cvt_roundpd_epi32(__mmask8 k, __m512d a, int r);
VCVTPD2DQ __m128i _mm256_mask_cvtpd_epi32(__m128i s, __mmask8 k, __m256d a);
VCVTPD2DQ __m128i _mm256_maskz_cvtpd_epi32(__mmask8 k, __m256d a);
VCVTPD2DQ __m128i _mm_mask_cvtpd_epi32(__m128i s, __mmask8 k, __m128d a);
VCVTPD2DQ __m128i _mm_maskz_cvtpd_epi32(__mmask8 k, __m128d a);
VCVTPD2DQ __m128i _mm256_cvtpd_epi32(__m256d src) CVTPD2DQ __m128i
    _mm_cvtpd_epi32(__m128d src)

SIMD Floating-Point Exceptions

Invalid, Precision

Other Exceptions

See Exceptions Type 2; additionally

EVEX-encoded instructions, see Exceptions Type E2.

#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..