모두의 코드
CVTDQ2PS (Intel x86/64 assembly instruction)
CVTDQ2PS
Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode | Op / | 64/32 | CPUID | Description |
---|---|---|---|---|
0F 5B /rCVTDQ2PS xmm1, xmm2/m128 | RM | V/V | SSE2 | Convert four packed signed doubleword integers from xmm2/mem to four packed single-precision floating-point values in xmm1. |
VEX.128.0F.WIG 5B /rVCVTDQ2PS xmm1, xmm2/m128 | RM | V/V | AVX | Convert four packed signed doubleword integers from xmm2/mem to four packed single-precision floating-point values in xmm1. |
VEX.256.0F.WIG 5B /rVCVTDQ2PS ymm1, ymm2/m256 | RM | V/V | AVX | Convert eight packed signed doubleword integers from ymm2/mem to eight packed single-precision floating-point values in ymm1. |
EVEX.128.0F.W0 5B /rVCVTDQ2PS xmm1 {k1}{z}, xmm2/m128/m32bcst | FV | V/V | AVX512VL | Convert four packed signed doubleword integers from xmm2/m128/m32bcst to four packed single-precision floating-point values in xmm1with writemask k1. |
EVEX.256.0F.W0 5B /rVCVTDQ2PS ymm1 {k1}{z}, ymm2/m256/m32bcst | FV | V/V | AVX512VL | Convert eight packed signed doubleword integers from ymm2/m256/m32bcst to eight packed single-precision floating-point values in ymm1with writemask k1. |
EVEX.512.0F.W0 5B /rVCVTDQ2PS zmm1 {k1}{z}, zmm2/m512/m32bcst{er} | FV | V/V | AVX512F | Convert sixteen packed signed doubleword integers from zmm2/m512/m32bcst to sixteen packed single-precision floating-point values in zmm1with writemask k1. |
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RM | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
FV | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
Description
Converts four, eight or sixteen packed signed doubleword integers in the source operand to four, eight or sixteen packed single-precision floating-point values in the destination operand.
EVEX encoded versions: The source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is a YMM register. Bits (MAXVL-1:256) of the corresponding register destination are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. The upper Bits (MAXVL-1:128) of the corresponding register destination are unmod-ified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTDQ2PS (EVEX encoded versions) when SRC operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_RM(EVEX.RC); ; refer to Table 2-4 in the Intel(R) Architecture Instruction Set Extensions Programming Reference ELSE SET_RM(MXCSR.RM); ; refer to Table 2-4 in the Intel(R) Architecture Instruction Set Extensions Programming Reference FI; FOR j <- 0 TO KL-1 i <- j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[i+31:i]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
VCVTDQ2PS (EVEX encoded versions) when SRC operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j <- 0 TO KL-1 i <- j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]) ELSE DEST[i+31:i] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[i+31:i]) FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
VCVTDQ2PS (VEX.256 encoded version)
DEST[31:0] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]) DEST[63:32] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]) DEST[95:64] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]) DEST[127:96] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[127:96) DEST[159:128] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[159:128]) DEST[191:160] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[191:160]) DEST[223:192] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[223:192]) DEST[255:224] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[255:224) DEST[MAX_VL-1:256] <- 0
VCVTDQ2PS (VEX.128 encoded version)
DEST[31:0] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]) DEST[63:32] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]) DEST[95:64] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]) DEST[127:96] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96) DEST[MAX_VL-1:128] <- 0
CVTDQ2PS (128-bit Legacy SSE version)
DEST[31:0] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]) DEST[63:32] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]) DEST[95:64] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]) DEST[127:96] <- Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96) DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTDQ2PS __m512 _mm512_cvtepi32_ps(__m512i a); VCVTDQ2PS __m512 _mm512_mask_cvtepi32_ps(__m512 s, __mmask16 k, __m512i a); VCVTDQ2PS __m512 _mm512_maskz_cvtepi32_ps(__mmask16 k, __m512i a); VCVTDQ2PS __m512 _mm512_cvt_roundepi32_ps(__m512i a, int r); VCVTDQ2PS __m512 _mm512_mask_cvt_roundepi_ps(__m512 s, __mmask16 k, __m512i a, int r); VCVTDQ2PS __m512 _mm512_maskz_cvt_roundepi32_ps(__mmask16 k, __m512i a, int r); VCVTDQ2PS __m256 _mm256_mask_cvtepi32_ps(__m256 s, __mmask8 k, __m256i a); VCVTDQ2PS __m256 _mm256_maskz_cvtepi32_ps(__mmask8 k, __m256i a); VCVTDQ2PS __m128 _mm_mask_cvtepi32_ps(__m128 s, __mmask8 k, __m128i a); VCVTDQ2PS __m128 _mm_maskz_cvtepi32_ps(__mmask8 k, __m128i a); CVTDQ2PS __m256 _mm256_cvtepi32_ps(__m256i src) CVTDQ2PS __m128 _mm_cvtepi32_ps(__m128i src)
SIMD Floating-Point Exceptions
Precision
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2;
EVEX-encoded instructions, see Exceptions Type E2.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.

댓글을 불러오는 중입니다..