모두의 코드
CVTDQ2PS (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 613 번 읽혔습니다.

CVTDQ2PS

Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

0F 5B /rCVTDQ2PS xmm1, xmm2/m128

RM

V/V

SSE2

Convert four packed signed doubleword integers from xmm2/mem to four packed single-precision floating-point values in xmm1.

VEX.128.0F.WIG 5B /rVCVTDQ2PS xmm1, xmm2/m128

RM

V/V

AVX

Convert four packed signed doubleword integers from xmm2/mem to four packed single-precision floating-point values in xmm1.

VEX.256.0F.WIG 5B /rVCVTDQ2PS ymm1, ymm2/m256

RM

V/V

AVX

Convert eight packed signed doubleword integers from ymm2/mem to eight packed single-precision floating-point values in ymm1.

EVEX.128.0F.W0 5B /rVCVTDQ2PS xmm1 {k1}{z}, xmm2/m128/m32bcst

FV

V/V

AVX512VL
AVX512F

Convert four packed signed doubleword integers from xmm2/m128/m32bcst to four packed single-precision floating-point values in xmm1with writemask k1.

EVEX.256.0F.W0 5B /rVCVTDQ2PS ymm1 {k1}{z}, ymm2/m256/m32bcst

FV

V/V

AVX512VL
AVX512F

Convert eight packed signed doubleword integers from ymm2/m256/m32bcst to eight packed single-precision floating-point values in ymm1with writemask k1.

EVEX.512.0F.W0 5B /rVCVTDQ2PS zmm1 {k1}{z}, zmm2/m512/m32bcst{er}

FV

V/V

AVX512F

Convert sixteen packed signed doubleword integers from zmm2/m512/m32bcst to sixteen packed single-precision floating-point values in zmm1with writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

FV

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

Description

Converts four, eight or sixteen packed signed doubleword integers in the source operand to four, eight or sixteen packed single-precision floating-point values in the destination operand.

EVEX encoded versions: The source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.

VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is a YMM register. Bits (MAXVL-1:256) of the corresponding register destination are zeroed.

VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. The upper Bits (MAXVL-1:128) of the corresponding register destination are unmod-ified.

VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.

Operation

VCVTDQ2PS (EVEX encoded versions) when SRC operand is a register

(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) 
    THEN
          SET_RM(EVEX.RC);  ; refer to Table 2-4 in the Intel(R) Architecture Instruction Set Extensions Programming Reference
    ELSE 
          SET_RM(MXCSR.RM);  ; refer to Table 2-4 in the Intel(R) Architecture Instruction Set Extensions Programming Reference
FI;
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-
                Convert_Integer_To_Single_Precision_Floating_Point(SRC[i+31:i])
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VCVTDQ2PS (EVEX encoded versions) when SRC operand is a memory source

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <- j * 32
    IF k1[j] OR *no writemask*
          THEN 
                IF (EVEX.b = 1) 
                      THEN
                            DEST[i+31:i] <-
                Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
                      ELSE 
                            DEST[i+31:i] <-
                Convert_Integer_To_Single_Precision_Floating_Point(SRC[i+31:i])
                FI;
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VCVTDQ2PS (VEX.256 encoded version)

DEST[31:0] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[127:96)
DEST[159:128] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[159:128])
DEST[191:160] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[191:160])
DEST[223:192] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[223:192])
DEST[255:224] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[255:224)
DEST[MAX_VL-1:256] <-  0

VCVTDQ2PS (VEX.128 encoded version)

DEST[31:0] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[MAX_VL-1:128] <-  0

CVTDQ2PS (128-bit Legacy SSE version)

DEST[31:0] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] <-  Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[MAX_VL-1:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTDQ2PS __m512 _mm512_cvtepi32_ps(__m512i a);
VCVTDQ2PS __m512 _mm512_mask_cvtepi32_ps(__m512 s, __mmask16 k, __m512i a);
VCVTDQ2PS __m512 _mm512_maskz_cvtepi32_ps(__mmask16 k, __m512i a);
VCVTDQ2PS __m512 _mm512_cvt_roundepi32_ps(__m512i a, int r);
VCVTDQ2PS __m512 _mm512_mask_cvt_roundepi_ps(__m512 s, __mmask16 k, __m512i a,
                                             int r);
VCVTDQ2PS __m512 _mm512_maskz_cvt_roundepi32_ps(__mmask16 k, __m512i a, int r);
VCVTDQ2PS __m256 _mm256_mask_cvtepi32_ps(__m256 s, __mmask8 k, __m256i a);
VCVTDQ2PS __m256 _mm256_maskz_cvtepi32_ps(__mmask8 k, __m256i a);
VCVTDQ2PS __m128 _mm_mask_cvtepi32_ps(__m128 s, __mmask8 k, __m128i a);
VCVTDQ2PS __m128 _mm_maskz_cvtepi32_ps(__mmask8 k, __m128i a);
CVTDQ2PS __m256 _mm256_cvtepi32_ps(__m256i src) CVTDQ2PS __m128
    _mm_cvtepi32_ps(__m128i src)

SIMD Floating-Point Exceptions

Precision

Other Exceptions

VEX-encoded instructions, see Exceptions Type 2;

EVEX-encoded instructions, see Exceptions Type E2.

#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..