모두의 코드
PMULHRSW (Intel x86/64 assembly instruction)
PMULHRSW
Packed Multiply High with Round and Scale
참고 사항
아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.
Opcode/ | Op/ | 64/32 bit | CPUID | Description |
---|---|---|---|---|
| RM | V/V | SSSE3 | Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to mm1. |
| RM | V/V | SSSE3 | Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1. |
| RVM | V/V | AVX | Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1. |
| RVM | V/V | AVX2 | Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to ymm1. |
| FVM | V/V | AVX512VL | Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1 under writemask k1. |
| FVM | V/V | AVX512VL | Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to ymm1 under writemask k1. |
| FVM | V/V | AVX512BW | Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to zmm1 under writemask k1. |
See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A
Instruction Operand Encoding
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|
RM | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
RVM | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
FVM | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | NA |
Description
PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand (first operand) with the corresponding signed 16-bit integer of the source operand (second operand), producing intermediate, signed 32-bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always performed by adding 1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by selecting the 16 bits immediately to the right of the most significant bit of each 18-bit intermediate result and packed to the destination operand.
When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.
In 64-bit mode and not encoded with VEX/EVEX, use the REX prefix to access XMM8-XMM15 registers.
Legacy SSE version 64-bit operand: Both operands can be MMX registers. The second source operand is an MMX register or a 64-bit memory location.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
Operation
PMULHRSW (with 64-bit operands)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1; temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1; temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1; temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1; DEST[15:0] = temp0[16:1]; DEST[31:16] = temp1[16:1]; DEST[47:32] = temp2[16:1]; DEST[63:48] = temp3[16:1];
PMULHRSW (with 128-bit operand)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1; temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1; temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1; temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1; temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1; temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1; temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1; temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1; DEST[15:0] = temp0[16:1]; DEST[31:16] = temp1[16:1]; DEST[47:32] = temp2[16:1]; DEST[63:48] = temp3[16:1]; DEST[79:64] = temp4[16:1]; DEST[95:80] = temp5[16:1]; DEST[111:96] = temp6[16:1]; DEST[127:112] = temp7[16:1];
VPMULHRSW (VEX.128 encoded version)
temp0[31:0] <- INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1 temp1[31:0] <- INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1 temp2[31:0] <- INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1 temp3[31:0] <- INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1 temp4[31:0] <- INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1 temp5[31:0] <- INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1 temp6[31:0] <- INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1 temp7[31:0] <- INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1 DEST[15:0] <- temp0[16:1] DEST[31:16] <- temp1[16:1] DEST[47:32] <- temp2[16:1] DEST[63:48] <- temp3[16:1] DEST[79:64] <- temp4[16:1] DEST[95:80] <- temp5[16:1] DEST[111:96] <- temp6[16:1] DEST[127:112] <- temp7[16:1] DEST[VLMAX-1:128] <- 0
VPMULHRSW (VEX.256 encoded version)
temp0[31:0] <- INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1 temp1[31:0] <- INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1 temp2[31:0] <- INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1 temp3[31:0] <- INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1 temp4[31:0] <- INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1 temp5[31:0] <- INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1 temp6[31:0] <- INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1 temp7[31:0] <- INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1 temp8[31:0] <- INT32 ((SRC1[143:128] * SRC2[143:128]) >>14) + 1 temp9[31:0] <- INT32 ((SRC1[159:144] * SRC2[159:144]) >>14) + 1 temp10[31:0] <- INT32 ((SRC1[75:160] * SRC2[175:160]) >>14) + 1 temp11[31:0] <- INT32 ((SRC1[191:176] * SRC2[191:176]) >>14) + 1 temp12[31:0] <- INT32 ((SRC1[207:192] * SRC2[207:192]) >>14) + 1 temp13[31:0] <- INT32 ((SRC1[223:208] * SRC2[223:208]) >>14) + 1 temp14[31:0] <- INT32 ((SRC1[239:224] * SRC2[239:224]) >>14) + 1 temp15[31:0] <- INT32 ((SRC1[255:240] * SRC2[255:240) >>14) + 1 DEST[15:0] <- temp0[16:1] DEST[31:16] <- temp1[16:1] DEST[47:32] <- temp2[16:1] DEST[63:48] <- temp3[16:1] DEST[79:64] <- temp4[16:1] DEST[95:80] <- temp5[16:1] DEST[111:96] <- temp6[16:1] DEST[127:112] <- temp7[16:1] DEST[143:128] <- temp8[16:1] DEST[159:144] <- temp9[16:1] DEST[175:160] <- temp10[16:1] DEST[191:176] <- temp11[16:1] DEST[207:192] <- temp12[16:1] DEST[223:208] <- temp13[16:1] DEST[239:224] <- temp14[16:1] DEST[255:240] <- temp15[16:1] DEST[MAX_VL-1:256] <- 0
VPMULHRSW (EVEX encoded version)
(KL, VL) = (8, 128), (16, 256), (32, 512) FOR j <- 0 TO KL-1 i <- j * 16 IF k1[j] OR *no writemask* THEN temp[31:0] <- ((SRC1[i+15:i] * SRC2[i+15:i]) >>14) + 1 DEST[i+15:i] <- tmp[16:1] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+15:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+15:i] <- 0 FI FI; ENDFOR DEST[MAX_VL-1:VL] <- 0
Intel C/C++ Compiler Intrinsic Equivalents
VPMULHRSW __m512i _mm512_mulhrs_epi16(__m512i a, __m512i b); VPMULHRSW __m512i _mm512_mask_mulhrs_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b); VPMULHRSW __m512i _mm512_maskz_mulhrs_epi16(__mmask32 k, __m512i a, __m512i b); VPMULHRSW __m256i _mm256_mask_mulhrs_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b); VPMULHRSW __m256i _mm256_maskz_mulhrs_epi16(__mmask16 k, __m256i a, __m256i b); VPMULHRSW __m128i _mm_mask_mulhrs_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b); VPMULHRSW __m128i _mm_maskz_mulhrs_epi16(__mmask8 k, __m128i a, __m128i b); PMULHRSW : __m64 _mm_mulhrs_pi16(__m64 a, __m64 b)(V) PMULHRSW : __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) VPMULHRSW : __m256i _mm256_mulhrs_epi16(__m256i a, __m256i b)
SIMD Floating-Point Exceptions
None.
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.

댓글을 불러오는 중입니다..