모두의 코드
PMULHRSW (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 561 번 읽혔습니다.

PMULHRSW

Packed Multiply High with Round and Scale

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 0B /r\footnote{1}
PMULHRSW mm1 mm2/m64

RM

V/V

SSSE3

Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to mm1.

66 0F 38 0B /r
PMULHRSW xmm1 xmm2/m128

RM

V/V

SSSE3

Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1.

VEX.NDS.128.66.0F38.WIG 0B /r
VPMULHRSW xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1.

VEX.NDS.256.66.0F38.WIG 0B /r
VPMULHRSW ymm1 ymm2 ymm3/m256

RVM

V/V

AVX2

Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to ymm1.

EVEX.NDS.128.66.0F38.WIG 0B /r
VPMULHRSW xmm1 {k1}{z} xmm2 xmm3/m128

FVM

V/V

AVX512VL
AVX512BW

Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1 under writemask k1.

EVEX.NDS.256.66.0F38.WIG 0B /r
VPMULHRSW ymm1 {k1}{z} ymm2 ymm3/m256

FVM

V/V

AVX512VL
AVX512BW

Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to ymm1 under writemask k1.

EVEX.NDS.512.66.0F38.WIG 0B /r
VPMULHRSW zmm1 {k1}{z} zmm2 zmm3/m512

FVM

V/V

AVX512BW

Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to zmm1 under writemask k1.

  1. See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FVM

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand (first operand) with the corresponding signed 16-bit integer of the source operand (second operand), producing intermediate, signed 32-bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always performed by adding 1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by selecting the 16 bits immediately to the right of the most significant bit of each 18-bit intermediate result and packed to the destination operand.

When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode and not encoded with VEX/EVEX, use the REX prefix to access XMM8-XMM15 registers.

Legacy SSE version 64-bit operand: Both operands can be MMX registers. The second source operand is an MMX register or a 64-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-tion register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.

Operation

PMULHRSW (with 64-bit operands)

    temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
    temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
    temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
    temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
    DEST[15:0] = temp0[16:1];
    DEST[31:16] = temp1[16:1];
    DEST[47:32] = temp2[16:1];
    DEST[63:48] = temp3[16:1];

PMULHRSW (with 128-bit operand)

    temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
    temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
    temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;
    temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
    temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;
    temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
    temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
    temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
    DEST[15:0] = temp0[16:1];
    DEST[31:16] = temp1[16:1];
    DEST[47:32] = temp2[16:1];
    DEST[63:48] = temp3[16:1];
    DEST[79:64] = temp4[16:1];
    DEST[95:80] = temp5[16:1];
    DEST[111:96] = temp6[16:1];
    DEST[127:112] = temp7[16:1];

VPMULHRSW (VEX.128 encoded version)

temp0[31:0] <-  INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] <-  INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] <-  INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] <-  INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] <-  INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] <-  INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] <-  INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] <-  INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
DEST[15:0] <-  temp0[16:1]
DEST[31:16] <-  temp1[16:1]
DEST[47:32] <-  temp2[16:1]
DEST[63:48] <-  temp3[16:1]
DEST[79:64] <-  temp4[16:1]
DEST[95:80] <-  temp5[16:1]
DEST[111:96] <-  temp6[16:1]
DEST[127:112] <-  temp7[16:1]
DEST[VLMAX-1:128] <-  0

VPMULHRSW (VEX.256 encoded version)

temp0[31:0] <-  INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] <-  INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] <-  INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] <-  INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] <-  INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] <-  INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] <-  INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] <-  INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
temp8[31:0] <-  INT32 ((SRC1[143:128] * SRC2[143:128]) >>14) + 1
temp9[31:0] <-  INT32 ((SRC1[159:144] * SRC2[159:144]) >>14) + 1
temp10[31:0] <-  INT32 ((SRC1[75:160] * SRC2[175:160]) >>14) + 1
temp11[31:0] <-  INT32 ((SRC1[191:176] * SRC2[191:176]) >>14) + 1
temp12[31:0] <-  INT32 ((SRC1[207:192] * SRC2[207:192]) >>14) + 1
temp13[31:0] <-  INT32 ((SRC1[223:208] * SRC2[223:208]) >>14) + 1
temp14[31:0] <-  INT32 ((SRC1[239:224] * SRC2[239:224]) >>14) + 1
temp15[31:0] <-  INT32 ((SRC1[255:240] * SRC2[255:240) >>14) + 1
DEST[15:0] <-  temp0[16:1]
DEST[31:16] <-  temp1[16:1]
DEST[47:32] <-  temp2[16:1]
DEST[63:48] <-  temp3[16:1]
DEST[79:64] <-  temp4[16:1]
DEST[95:80] <-  temp5[16:1]
DEST[111:96] <-  temp6[16:1]
DEST[127:112] <-  temp7[16:1]
DEST[143:128] <-  temp8[16:1]
DEST[159:144] <-  temp9[16:1]
DEST[175:160] <-  temp10[16:1]
DEST[191:176] <-  temp11[16:1]
DEST[207:192] <-  temp12[16:1]
DEST[223:208] <-  temp13[16:1]
DEST[239:224] <-  temp14[16:1]
DEST[255:240] <-  temp15[16:1]
DEST[MAX_VL-1:256] <-  0

VPMULHRSW (EVEX encoded version)

(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j <-  0 TO KL-1
    i <-  j * 16
    IF k1[j] OR *no writemask*
          THEN 
                temp[31:0] <-  ((SRC1[i+15:i] * SRC2[i+15:i]) >>14) + 1
                DEST[i+15:i] <-  tmp[16:1]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
                            DEST[i+15:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalents

VPMULHRSW __m512i _mm512_mulhrs_epi16(__m512i a, __m512i b);
VPMULHRSW __m512i _mm512_mask_mulhrs_epi16(__m512i s, __mmask32 k, __m512i a,
                                           __m512i b);
VPMULHRSW __m512i _mm512_maskz_mulhrs_epi16(__mmask32 k, __m512i a, __m512i b);
VPMULHRSW __m256i _mm256_mask_mulhrs_epi16(__m256i s, __mmask16 k, __m256i a,
                                           __m256i b);
VPMULHRSW __m256i _mm256_maskz_mulhrs_epi16(__mmask16 k, __m256i a, __m256i b);
VPMULHRSW __m128i _mm_mask_mulhrs_epi16(__m128i s, __mmask8 k, __m128i a,
                                        __m128i b);
VPMULHRSW __m128i _mm_maskz_mulhrs_epi16(__mmask8 k, __m128i a, __m128i b);
PMULHRSW : __m64 _mm_mulhrs_pi16(__m64 a, __m64 b)(V) PMULHRSW
    : __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) VPMULHRSW
    : __m256i _mm256_mulhrs_epi16(__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded instruction, see Exceptions Type E4.nb.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..