모두의 코드
PMULLD, PMULLQs (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 1112 번 읽혔습니다.

PMULLD, PMULLQ

Multiply Packed Integers and Store Low Result

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 40 /r
PMULLD xmm1 xmm2/m128

RM

V/V

SSE4_1

Multiply the packed dword signed integers in xmm1 and xmm2/m128 and store the low 32 bits of each product in xmm1.

VEX.NDS.128.66.0F38.WIG 40 /r
VPMULLD xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Multiply the packed dword signed integers in xmm2 and xmm3/m128 and store the low 32 bits of each product in xmm1.

VEX.NDS.256.66.0F38.WIG 40 /r
VPMULLD ymm1 ymm2 ymm3/m256

RVM

V/V

AVX2

Multiply the packed dword signed integers in ymm2 and ymm3/m256 and store the low 32 bits of each product in ymm1.

EVEX.NDS.128.66.0F38.W0 40 /r
VPMULLD xmm1 {k1}{z} xmm2 xmm3/m128/m32bcst

FV

V/V

AVX512VL
AVX512F

Multiply the packed dword signed integers in xmm2 and xmm3/m128/m32bcst and store the low 32 bits of each product in xmm1 under writemask k1.

EVEX.NDS.256.66.0F38.W0 40 /r
VPMULLD ymm1 {k1}{z} ymm2 ymm3/m256/m32bcst

FV

V/V

AVX512VL
AVX512F

Multiply the packed dword signed integers in ymm2 and ymm3/m256/m32bcst and store the low 32 bits of each product in ymm1 under writemask k1.

EVEX.NDS.512.66.0F38.W0 40 /r
VPMULLD zmm1 {k1}{z} zmm2 zmm3/m512/m32bcst

FV

V/V

AVX512F

Multiply the packed dword signed integers in zmm2 and zmm3/m512/m32bcst and store the low 32 bits of each product in zmm1 under writemask k1.

EVEX.NDS.128.66.0F38.W1 40 /r
VPMULLQ xmm1 {k1}{z} xmm2 xmm3/m128/m64bcst

FV

V/V

AVX512VL
AVX512DQ

Multiply the packed qword signed integers in xmm2 and xmm3/m128/m64bcst and store the low 64 bits of each product in xmm1 under writemask k1.

EVEX.NDS.256.66.0F38.W1 40 /r
VPMULLQ ymm1 {k1}{z} ymm2 ymm3/m256/m64bcst

FV

V/V

AVX512VL
AVX512DQ

Multiply the packed qword signed integers in ymm2 and ymm3/m256/m64bcst and store the low 64 bits of each product in ymm1 under writemask k1.

EVEX.NDS.512.66.0F38.W1 40 /r
VPMULLQ zmm1 {k1}{z} zmm2 zmm3/m512/m64bcst

FV

V/V

AVX512DQ

Multiply the packed qword signed integers in zmm2 and zmm3/m512/m64bcst and store the low 64 bits of each product in zmm1 under writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FV

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Performs a SIMD signed multiply of the packed signed dword/qword integers from each element of the first source operand with the corresponding element in the second source operand. The low 32/64 bits of each 64/128-bit intermediate results are stored to the destination operand.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding ZMM destina-tion register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding ZMM register are zeroed.

VEX.256 encoded version: The first source operand is a YMM register; The second source operand is a YMM register or 256-bit memory location. Bits (MAXVL-1:256) of the corresponding destination ZMM register are zeroed.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.

Operation

VPMULLQ (EVEX encoded versions)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask* THEN
                IF (EVEX.b == 1) AND (SRC2 *is memory*)
                      THEN Temp[127:0] <-  SRC1[i+63:i] * SRC2[63:0]
                      ELSE Temp[127:0] <-  SRC1[i+63:i] * SRC2[i+63:i]
                FI;
                DEST[i+63:i] <-  Temp[63:0]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VPMULLD (EVEX encoded versions)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask* THEN
                IF (EVEX.b = 1) AND (SRC2 *is memory*)
                      THEN Temp[63:0] <-  SRC1[i+31:i] * SRC2[31:0]
                      ELSE Temp[63:0] <-  SRC1[i+31:i] * SRC2[i+31:i]
                FI;
                DEST[i+31:i] <-  Temp[31:0]
          ELSE 
                IF *merging-masking* ; merging-masking
                      *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VPMULLD (VEX.256 encoded version)

Temp0[63:0] <-  SRC1[31:0] * SRC2[31:0]
Temp1[63:0] <-  SRC1[63:32] * SRC2[63:32]
Temp2[63:0] <-  SRC1[95:64] * SRC2[95:64]
Temp3[63:0] <-  SRC1[127:96] * SRC2[127:96]
Temp4[63:0] <-  SRC1[159:128] * SRC2[159:128]
Temp5[63:0] <-  SRC1[191:160] * SRC2[191:160]
Temp6[63:0] <-  SRC1[223:192] * SRC2[223:192]
Temp7[63:0] <-  SRC1[255:224] * SRC2[255:224]
DEST[31:0] <-  Temp0[31:0]
DEST[63:32] <-  Temp1[31:0]
DEST[95:64] <-  Temp2[31:0]
DEST[127:96] <-  Temp3[31:0]
DEST[159:128] <-  Temp4[31:0]
DEST[191:160] <-  Temp5[31:0]
DEST[223:192] <-  Temp6[31:0]
DEST[255:224] <-  Temp7[31:0]
DEST[MAX_VL-1:256] <-  0

VPMULLD (VEX.128 encoded version)

Temp0[63:0] <-  SRC1[31:0] * SRC2[31:0]
Temp1[63:0] <-  SRC1[63:32] * SRC2[63:32]
Temp2[63:0] <-  SRC1[95:64] * SRC2[95:64]
Temp3[63:0] <-  SRC1[127:96] * SRC2[127:96]
DEST[31:0] <-  Temp0[31:0]
DEST[63:32] <-  Temp1[31:0]
DEST[95:64] <-  Temp2[31:0]
DEST[127:96] <-  Temp3[31:0]
DEST[MAX_VL-1:128] <-  0
PMULLD (128-bit Legacy SSE version)
Temp0[63:0] <-  DEST[31:0] * SRC[31:0]
Temp1[63:0] <-  DEST[63:32] * SRC[63:32]
Temp2[63:0] <-  DEST[95:64] * SRC[95:64]
Temp3[63:0] <-  DEST[127:96] * SRC[127:96]
DEST[31:0] <-  Temp0[31:0]
DEST[63:32] <-  Temp1[31:0]
DEST[95:64] <-  Temp2[31:0]
DEST[127:96] <-  Temp3[31:0]
DEST[MAX_VL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VPMULLD __m512i _mm512_mullo_epi32(__m512i a, __m512i b);
VPMULLD __m512i _mm512_mask_mullo_epi32(__m512i s, __mmask16 k, __m512i a,
                                        __m512i b);
VPMULLD __m512i _mm512_maskz_mullo_epi32(__mmask16 k, __m512i a, __m512i b);
VPMULLD __m256i _mm256_mask_mullo_epi32(__m256i s, __mmask8 k, __m256i a,
                                        __m256i b);
VPMULLD __m256i _mm256_maskz_mullo_epi32(__mmask8 k, __m256i a, __m256i b);
VPMULLD __m128i _mm_mask_mullo_epi32(__m128i s, __mmask8 k, __m128i a,
                                     __m128i b);
VPMULLD __m128i _mm_maskz_mullo_epi32(__mmask8 k, __m128i a, __m128i b);
VPMULLD __m256i _mm256_mullo_epi32(__m256i a, __m256i b);
PMULLD __m128i _mm_mullo_epi32(__m128i a, __m128i b);
VPMULLQ __m512i _mm512_mullo_epi64(__m512i a, __m512i b);
VPMULLQ __m512i _mm512_mask_mullo_epi64(__m512i s, __mmask8 k, __m512i a,
                                        __m512i b);
VPMULLQ __m512i _mm512_maskz_mullo_epi64(__mmask8 k, __m512i a, __m512i b);
VPMULLQ __m256i _mm256_mullo_epi64(__m256i a, __m256i b);
VPMULLQ __m256i _mm256_mask_mullo_epi64(__m256i s, __mmask8 k, __m256i a,
                                        __m256i b);
VPMULLQ __m256i _mm256_maskz_mullo_epi64(__mmask8 k, __m256i a, __m256i b);
VPMULLQ __m128i _mm_mullo_epi64(__m128i a, __m128i b);
VPMULLQ __m128i _mm_mask_mullo_epi64(__m128i s, __mmask8 k, __m128i a,
                                     __m128i b);
VPMULLQ __m128i _mm_maskz_mullo_epi64(__mmask8 k, __m128i a, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded instruction, see Exceptions Type E4.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..