모두의 코드
PMULHUW (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 569 번 읽혔습니다.

PMULHUW

Multiply Packed Unsigned Integers and Store High Result

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F E4 /r\footnote{1}
PMULHUW mm1 mm2/m64

RM

V/V

SSE

Multiply the packed unsigned word integers in mm1 register and mm2/m64, and store the high 16 bits of the results in mm1.

66 0F E4 /r
PMULHUW xmm1 xmm2/m128

RM

V/V

SSE2

Multiply the packed unsigned word integers in xmm1 and xmm2/m128, and store the high 16 bits of the results in xmm1.

VEX.NDS.128.66.0F.WIG E4 /r
VPMULHUW xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Multiply the packed unsigned word integers in xmm2 and xmm3/m128, and store the high 16 bits of the results in xmm1.

VEX.NDS.256.66.0F.WIG E4 /r
VPMULHUW ymm1 ymm2 ymm3/m256

RVM

V/V

AVX2

Multiply the packed unsigned word integers in ymm2 and ymm3/m256, and store the high 16 bits of the results in ymm1.

EVEX.NDS.128.66.0F.WIG E4 /r
VPMULHUW xmm1 {k1}{z} xmm2 xmm3/m128

FVM

V/V

AVX512VL
AVX512BW

Multiply the packed unsigned word integers in xmm2 and xmm3/m128, and store the high 16 bits of the results in xmm1 under writemask k1.

EVEX.NDS.256.66.0F.WIG E4 /r
VPMULHUW ymm1 {k1}{z} ymm2 ymm3/m256

FVM

V/V

AVX512VL
AVX512BW

Multiply the packed unsigned word integers in ymm2 and ymm3/m256, and store the high 16 bits of the results in ymm1 under writemask k1.

EVEX.NDS.512.66.0F.WIG E4 /r
VPMULHUW zmm1 {k1}{z} zmm2 zmm3/m512

FVM

V/V

AVX512BW

Multiply the packed unsigned word integers in zmm2 and zmm3/m512, and store the high 16 bits of the results in zmm1 under writemask k1.

  1. See note in Section 2.4, "AVX and SSE Instruction Exception Specification" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 3A

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FVM

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the destination operand (first operand) and the source operand (second operand), and stores the high 16 bits of each 32-bit intermediate results in the destination operand. (Figure 4-12 shows this operation when using 64-bit operands.)

In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).

Legacy SSE version 64-bit operand: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an MMX technology register.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-tion register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must be 0, otherwise the instruction will #UD.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.

6 1 3 [ 0 Z 1 3 1 ] 6 : 1 2 ] 1 [ 3 M E T Y Y 2 3 Y T E D T S E D : 0 Y 0 Y `*` 2 X 3 X Z 0 2 X : = 0 1 R 1 C : [ 3 6 `*` S 1 1 `*` Z 3 3 2 Z `*` 1 1 Z 1 = 2 1 3 Y X 1 X ] P = [ 3 0 Z Z S X Y X Y ] 6 X Z =
Figure 4-12. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

Operation

PMULHUW (with 64-bit operands)

    TEMP0[31:0] <- DEST[15:0] `*` SRC[15:0]; (* Unsigned multiplication *)
    TEMP1[31:0] <- DEST[31:16] `*` SRC[31:16];
    TEMP2[31:0] <-  DEST[47:32] `*` SRC[47:32];
    TEMP3[31:0] <- DEST[63:48] `*` SRC[63:48];
    DEST[15:0] <-  TEMP0[31:16];
    DEST[31:16] <-  TEMP1[31:16];
    DEST[47:32] <-  TEMP2[31:16];
    DEST[63:48] <-  TEMP3[31:16];

PMULHUW (with 128-bit operands)

    TEMP0[31:0] <-  DEST[15:0] `*` SRC[15:0]; (* Unsigned multiplication *)
    TEMP1[31:0] <- DEST[31:16] `*` SRC[31:16];
    TEMP2[31:0] <-  DEST[47:32] `*` SRC[47:32];
    TEMP3[31:0] <- DEST[63:48] `*` SRC[63:48];
    TEMP4[31:0] <- DEST[79:64] `*` SRC[79:64];
    TEMP5[31:0] <-  DEST[95:80] `*` SRC[95:80];
    TEMP6[31:0] <-  DEST[111:96] `*` SRC[111:96];
    TEMP7[31:0] <- DEST[127:112] `*` SRC[127:112];
    DEST[15:0] <-  TEMP0[31:16];
    DEST[31:16] <-  TEMP1[31:16];
    DEST[47:32] <-  TEMP2[31:16];
    DEST[63:48] <-  TEMP3[31:16];
    DEST[79:64] <-  TEMP4[31:16];
    DEST[95:80] <-  TEMP5[31:16];
    DEST[111:96] <-  TEMP6[31:16];
    DEST[127:112] <- TEMP7[31:16];

VPMULHUW (VEX.128 encoded version)

TEMP0[31:0] <-  SRC1[15:0] * SRC2[15:0]
TEMP1[31:0] <-  SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] <-  SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] <-  SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] <-  SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] <-  SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] <-  SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] <-  SRC1[127:112] * SRC2[127:112]
DEST[15:0] <-  TEMP0[31:16]
DEST[31:16] <-  TEMP1[31:16]
DEST[47:32] <-  TEMP2[31:16]
DEST[63:48] <-  TEMP3[31:16]
DEST[79:64] <-  TEMP4[31:16]
DEST[95:80] <-  TEMP5[31:16]
DEST[111:96] <-  TEMP6[31:16]
DEST[127:112] <-  TEMP7[31:16]
DEST[VLMAX-1:128] <-  0

PMULHUW (VEX.256 encoded version)

TEMP0[31:0] <-  SRC1[15:0] * SRC2[15:0]
TEMP1[31:0] <-  SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] <-  SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] <-  SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] <-  SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] <-  SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] <-  SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] <-  SRC1[127:112] * SRC2[127:112]
TEMP8[31:0] <-  SRC1[143:128] * SRC2[143:128]
TEMP9[31:0] <-  SRC1[159:144] * SRC2[159:144]
TEMP10[31:0] <-  SRC1[175:160] * SRC2[175:160]
TEMP11[31:0] <-  SRC1[191:176] * SRC2[191:176]
TEMP12[31:0] <-  SRC1[207:192] * SRC2[207:192]
TEMP13[31:0] <-  SRC1[223:208] * SRC2[223:208]
TEMP14[31:0] <-  SRC1[239:224] * SRC2[239:224]
TEMP15[31:0] <-  SRC1[255:240] * SRC2[255:240]
DEST[15:0] <-  TEMP0[31:16]
DEST[31:16] <-  TEMP1[31:16]
DEST[47:32] <-  TEMP2[31:16]
DEST[63:48] <-  TEMP3[31:16]
DEST[79:64] <-  TEMP4[31:16]
DEST[95:80] <-  TEMP5[31:16]
DEST[111:96] <-  TEMP6[31:16]
DEST[127:112] <-  TEMP7[31:16]
DEST[143:128] <-  TEMP8[31:16]
DEST[159:144] <-  TEMP9[31:16]
DEST[175:160] <-  TEMP10[31:16]
DEST[191:176] <-  TEMP11[31:16]
DEST[207:192] <-  TEMP12[31:16]
DEST[223:208] <-  TEMP13[31:16]
DEST[239:224] <-  TEMP14[31:16]
DEST[255:240] <-  TEMP15[31:16]
DEST[MAX_VL-1:256] <-  0

PMULHUW (EVEX encoded versions)

(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j <-  0 TO KL-1
    i <-  j * 16
    IF k1[j] OR *no writemask*
          THEN 
                temp[31:0] <-  SRC1[i+15:i] * SRC2[i+15:i]
                DEST[i+15:i] <-  tmp[31:16]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+15:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking
                            DEST[i+15:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalent

VPMULHUW __m512i _mm512_mulhi_epu16(__m512i a, __m512i b);
VPMULHUW __m512i _mm512_mask_mulhi_epu16(__m512i s, __mmask32 k, __m512i a,
                                         __m512i b);
VPMULHUW __m512i _mm512_maskz_mulhi_epu16(__mmask32 k, __m512i a, __m512i b);
VPMULHUW __m256i _mm256_mask_mulhi_epu16(__m256i s, __mmask16 k, __m256i a,
                                         __m256i b);
VPMULHUW __m256i _mm256_maskz_mulhi_epu16(__mmask16 k, __m256i a, __m256i b);
VPMULHUW __m128i _mm_mask_mulhi_epu16(__m128i s, __mmask8 k, __m128i a,
                                      __m128i b);
VPMULHUW __m128i _mm_maskz_mulhi_epu16(__mmask8 k, __m128i a, __m128i b);
PMULHUW : __m64 _mm_mulhi_pu16(__m64 a, __m64 b)(V) PMULHUW
    : __m128i _mm_mulhi_epu16(__m128i a, __m128i b) VPMULHUW
    : __m256i _mm256_mulhi_epu16(__m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4.

EVEX-encoded instruction, see Exceptions Type E4.nb.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..